Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cochrane Database of Systematic Reviews 2019-06

Lipid emulsions for parenterally fed preterm infants.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Vishal Kapoor
Manoj Malviya
Roger Soll

Märksõnad

Abstraktne

Conventionally used soybean oil-based lipid emulsion (S-LE) have high polyunsaturated fatty acid (PUFA) content and phytosterols that may contribute to adverse effects in preterm infants. The newer lipid emulsions (LE) from different lipid sources are currently available for use in preterm infants.To compare the safety and efficacy of all LE for parenteral nutrition (PN) in preterm infants (less than 37 weeks' gestation) including preterm infants with surgical conditions or parenteral nutrition-associated liver disease (PNALD)/cholestasis using direct comparisons and pair-wise meta-analyses.We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2018, Issue 5), MEDLINE (1946 to 18 June 2018), Embase (1974 to 18 July 2018), CINAHL (1982 to 18 June 2018), MIDRIS (1971 to 31 May 2018), conference proceedings, trial registries (ClinicalTrials.gov and WHO's Trials Registry and Platform), and reference lists of retrieved articles.Randomised or quasi-randomised controlled studies in preterm infants with or without surgical conditions or PNALD within the first six months of life.Data collection and analysis conformed to the methods of Cochrane Neonatal. We used the GRADE approach to assess the quality of evidence for important outcomes in addition to reporting statistical significance of results.We included 29 studies (n = 2037) in this review. LE were classified in three broad groups: 1. all fish oil-containing LE including pure fish oil-LE (F-LE) and multisource LE (e.g. medium-chain triglycerides (MCT)-olive-fish-soybean oil-LE (MOFS-LE), MCT-fish-soybean oil-LE (MFS-LE) and olive-fish-soybean oil-LE (OFS-LE); 2. conventional S-LE; 3. alternative-LE (e.g. MCT-soybean oil-LE (MS-LE), olive-soybean oil-LE and borage oil-based LE).We considered the following broad comparisons: fish oil LE versus non-fish oil LE; fish oil LE versus another fish oil LE; alternative-LE versus S-LE; alternative-LE versus another alternative-LE in preterm infants less than 37 weeks' gestation, preterm infants with surgical conditions and preterm infants with PNALD/cholestasis. Separate subgroup comparisons of each LE preparation were included within these broader groups.Most studies in preterm infants used PN for mean duration of four weeks or less and for longer duration in infants with cholestasis or surgical conditions.We defined the primary outcome of PNALD/cholestasis as conjugated bilirubin (Cbil) 2 mg/dL or greater and resolution of PNALD/cholestasis as Cbil less than 2 mg/dL. There was heterogeneity in definitions used by the included studies with Cbil cut-offs ranging from 17.1 μmol/L (1 mg/dL) up to 50 μmol/L (about 3 mg/dL).In preterm infants, meta-analysis found no evidence of a difference in the incidence of PNALD/cholestasis (Cbil cut-off: 2 mg/dl) between fish oil-LEs and all non-fish oil LEs (typical risk ratio (RR) 0.61, 95% confidence interval (CI) 0.24 to 1.56; typical risk difference (RD) -0.03, 95% CI -0.08 to 0.02; 4 studies; n = 328; low-quality evidence).We also considered an outcome allowing for any definition of PNALD (different Cbil cutoffs). In the meta-analysis for PNALD/cholestasis, using any definition and restricted to low or unclear risk of bias studies, there was no evidence of a difference between fish oil LE and all non-fish oil LE for incidence of cholestasis (typical RR 0.80, 95% CI 0.53 to 1.21; typical RD -0.02, 95% CI -0.05 to 0.02; 10 studies; n = 1024; low-quality evidence). There was no evidence of difference in subgroup meta-analyses of individual LE types in any comparison.In preterm infants with surgical conditions or cholestasis, there was only one small study each reporting no evidence of a difference in incidence or resolution of cholestasis respectively with use of a pure F-LE versus S-LE (using a Cbil cut-off of 2 mg/dL).In preterm infants with PNALD/cholestasis (using any definition), the meta-analysis showed significantly less cholestasis with the use of fish oil-LE compared to S-LE (typical RR 0.54, 95% CI 0.32 to 0.91; typical RD -0.39, 95% CI -0.65 to -0.12; number needed to treat for an additional beneficial outcome (NNTB) 3, 95% CI 2 to 9; 2 studies; n = 40; very low-quality evidence). However, this outcome had a very low number of participants from two small studies with methodological differences, one of which was terminated early, increasing the uncertainty about effect estimates.There were no differences between LE types in pair-wise meta-analyses for growth in preterm infants. There was paucity of studies in preterm infants with surgical conditions or cholestasis to perform meta-analyses for growth and most other outcomes.In the secondary outcomes for preterm infants, there was no difference between fish-oil LE and non-fish oil LE in meta-analysis for severe retinopathy of prematurity (ROP) (stage 3 or greater, or requiring surgery: typical RR 0.80, 95% CI 0.55 to 1.16; typical RD -0.03, 95% CI -0.07 to 0.02; 7 studies; n = 731; very low-quality evidence). There were no differences in the LE types in pair-wise meta-analyses for death, bronchopulmonary dysplasia (BPD), ventilation duration, patent ductus arteriosus, sepsis, necrotising enterocolitis, intraventricular haemorrhage, periventricular leukomalacia, jaundice, hyperglycaemia, hypertriglyceridaemia, intrahepatocellular lipid content and conjugated bilirubin levels in any comparison.In surgical infants, one study (n = 19) reported no differences in death, sepsis rates, Cbil and neurodevelopmental outcomes with pure F-LE versus S-LE.In infants with cholestasis, there were no evidence of differences in death or sepsis in meta-analyses between fish oil-LE and S-LE; (2 studies; n = 40; very low-quality evidence).In the current review, we did not find any particular LE with or without fish oil to be better than another LE in preterm infants for prevention of PNALD/cholestasis, growth, mortality, ROP, BPD and other neonatal outcomes.In preterm infants with surgical conditions or cholestasis, there is currently insufficient evidence from randomised studies to determine with any certainty if fish oil LEs offer advantage in prevention or resolution of cholestasis or in any other clinical outcome.Further research, with larger well-designed trials, is warranted to evaluate the ideal composition of LE in preterm infants and the role of fish oil-containing and other LEs in the prevention and resolution of PNALD, ROP and other clinical outcomes.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge