Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Photosynthesis Research 2011-Sep

Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Asaph B Cousins
Berkley J Walker
Itsara Pracharoenwattana
Steven M Smith
Murray R Badger

Märksõnad

Abstraktne

Recycling of carbon by the photorespiratory pathway involves enzymatic steps in the chloroplast, mitochondria, and peroxisomes. Most of these reactions are essential for plants growing under ambient CO(2) concentrations. However, some disruptions of photorespiratory metabolism cause subtle phenotypes in plants grown in air. For example, Arabidopsis thaliana lacking both of the peroxisomal malate dehydrogenase genes (pmdh1pmdh2) or hydroxypyruvate reductase (hpr1) are viable in air and have rates of photosynthesis only slightly lower than wild-type plants. To investigate how disruption of the peroxisomal reduction of hydroxypyruvate to glycerate influences photorespiratory carbon metabolism we analyzed leaf gas exchange in A. thaliana plants lacking peroxisomal HPR1 expression. In addition, because the lack of HPR1 could be compensated for by other reactions within the peroxisomes using reductant supplied by PMDH a triple mutant lacking expression of both peroxisomal PMDH genes and HPR1 (pmdh1pmdh2hpr1) was analyzed. Rates of photosynthesis under photorespiratory conditions (ambient CO(2) and O(2) concentrations) were slightly reduced in the hpr1 and pmdh1pmdh2hpr1 plants indicating other reactions can help bypass this disruption in the photorespiratory pathway. However, the CO(2) compensation points (Γ) increased under photorespiratory conditions in both mutants indicating changes in photorespiratory carbon metabolism in these plants. Measurements of Γ*, the CO(2) compensation point in the absence of mitochondrial respiration, and the CO(2) released per Rubisco oxygenation reaction demonstrated that the increase in Γ in the hpr1 and pmdh1pmdh2hpr1 plants is not associated with changes in mitochondrial respiration but with an increase in the non-respiratory CO(2) released per Rubisco oxygenation reaction.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge