Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1993-Nov

The Role of Flavonol Glycosides and Carotenoids in Protecting Soybean from Ultraviolet-B Damage.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
E. M. Middleton
A. H. Teramura

Märksõnad

Abstraktne

The increase in ultraviolet-B (UV-B; 0.290-0.320 [mu]m) radiation received by plants due to stratospheric ozone depletion heightens the importance of understanding UV-B tolerance. Photosynthetic tissue is believed to be protected from UV-B radiation by UV-B-absorbing compounds (e.g. flavonoids). Although synthesis of flavonoids is induced by UV-B radiation, its protective role on photosynthetic pigments has not been clearly demonstrated. This results in part from the design of UV-B experiments in which experimental UV-A irradiance has not been carefully controlled, since blue/UV-A radiation is involved in the biosynthesis of the photosynthetic pigments. The relationship of flavonoids to photosynthetic performance, photosynthetic pigments, and growth measures was examined in an experiment where UV-A control groups were included at two biologically effective daily UV-B irradiances, 14.1 and 10.7 kJ m-2. Normal, chlorophyll-deficient, and flavonoid-deficient pigment isolines of two soybean (Glycine max) cultivars that produced different flavonol glycosides (Harosoy produced kaempferol, Clark produced quercetin and kaempferol) were examined. Plants with higher levels of total flavonoids, not specific flavonol glycosides, were more UV-B tolerant as determined by growth, pigment, and gas-exchange variables. Regression analyses indicated no direct relationship between photosynthesis and leaf levels of UV-B-absorbing compounds. UV-B radiation increased photosynthetic pigment content, along with UV-B-absorbing compounds, but only the former (especially carotenoids) was related to total biomass (r2 = 0.61, linear) and to photosynthetic efficiency (negative, exponential relationship, r2 = 0.82). A reduction in photosynthesis was associated primarily with a stomatal limitation rather than photosystem II damage. This study suggests that both carotenoids and flavonoids may be involved in plant UV-B photoprotection, but only carotenoids are directly linked to photoprotection of photosynthetic function. These results additionally show the importance of UV-A control in UV-B experiments conducted using artificial lamps and filters.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge