Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular and Cellular Cardiology 1992-Aug

Triacylglycerol metabolism in hypoxic, glucose-deprived rat cardiomyocytes.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
T Myrmel
K Forsdahl
T S Larsen

Märksõnad

Abstraktne

We have recently shown that a triacylglycerol (TG)-fatty acid cycle is operating in rat myocardial cells incubated in a hypoxic, glucose-containing incubation medium (Myrmel et al., 1991a). In the present study we investigated whether this cycle occurred in hypoxic, glucose-deprived myocytes, and whether high TG levels would increase TG-fatty acid cycling and thereby energy consumption. Myocytes with elevated contents of TG were obtained from the hearts of streptozotocin-induced diabetic rats (diabetic myocytes) and from normal rat myocytes prepared in the presence of oleic acid (TG-loaded myocytes). The TG content of diabetic and TG-loaded myocytes prior to hypoxic incubations was more than two times higher (P < 0.05) than that of their respective controls (123.8 +/- 20.6 and 125.3 +/- 12.7 vs 56.8 +/- 6.0 and 58.6 +/- 9.4 nmol/10(6) cells, mean +/- S.E., n = 7). Only diabetic and TG-loaded myocytes expressed marked reductions in TG content during glucose free incubations. There were no differences in TG-fatty acid cycling between the various myocyte groups, calculated as the difference between glycerol output and the concomitant decrease in TG (range: 36.7 +/- 8.1- 48.9 +/- 9.7 nmol TG/10(6) cells.2h). Apparently, the cycle was continuous throughout the whole incubation period despite falling ATP levels, contracture (rounding up) of myocytes, as well as cessation of glycogenolysis after about 40 min incubation. The cellular content of glycerol-3-phosphate, known to control TG-fatty acid cycling, increased continuously and to the same extent throughout the 2 h incubation period. Futile energy consumption associated with TG-fatty acid cycling, amounted to approximately 30% of total cellular energy consumption for the whole incubation period. In conclusion, hypoxic glucose deprived rat myocytes show TG-fatty-acid cycling, even after cessation of glycogenolysis. The extent of cycling, and thus the energy cost associated with it, was not influenced by the initial level of TG in the myocytes. We propose that glycerol-3-phosphate needed to fuel the TG-fatty acid cycle after exhaustion of the glycolytic supply is derived from phospholipid degradation.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge