Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1986-Jun

Two indirect methods for detecting ureide synthesis by nodulated legumes.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
E W Triplett

Märksõnad

Abstraktne

Two methods were developed for the detection of altered ureide metabolism in legume nodules. Both techniques are based on the positive correlation between the presence of high xanthine dehydrogenase (EC 1.2.1.37) specific activity in nodules and the ability of those nodules to produce the ureides, allantoin and allantoic acid. In the first method, nodulated legumes are treated for 2 weeks with a soil drench of allopurinol. After allopurinol treatment, leaves of N(2)-fed, ureide-producing legumes, soybean, cowpea, and lima bean, became very chlorotic. Leaves of KNO(3) (-) or NH(4)Cl-fed ureide-producing legumes were unaffected by the allopurinol treatment. Leaves of the amide-producing legumes, alfalfa, clover, peak, and lupin, were unaffected by the allopurinol treatment with N(2), KNO(3), or NH(4)Cl as nitrogen source. These experiments showed that long-term allopurinol treatments are useful in differentiating between ureide- and amide-producing legumes when effectively nodulated. A second method was developed for the rapid, qualitative estimation of xanthine dehydrogenase activity in legume nodules. This method utilizes pterin, an alternate substrate for xanthine dehydrogenase. Xanthine dehydrogenase hydroxylates pterin in the presence of NAD(+) to produce isoxanthopterin. When exposed to long wave ultraviolet light (365 nanometers), isoxanthopterin emits blue fluorescence. When nodules of ureide-producing legumes were sliced in half and placed in microtiter plate wells containing NAD(+) and pterin, isoxanthopterin was observed after 6 hours of incubation at room temperature. Allopurinol prevented isoxanthopterin production. When slices of amide-producing legume nodules were placed in wells with pterin and NAD(+), no blue fluorescence was observed. The production of NADH by xanthine dehydrogenase does not interfere with the fluorescence of isoxanthopterin. These observations agree with the high specific activity of xanthine dehydrogenase in nodules of ureide-producing legumes and the low activity measured in amide-producing nodules. The wild soybean, Glycine soja Sieb. and Zucc., was examined for ureide synthesis. Stems of wild soybean plants had a high ureide abundance with N(2) as sole nitrogen source when nodulated with either Rhizobium fredii or Bradyrhizobium japonicum. Ureide abundance declined when nitrate or ammonium was added to the nutrient solution. Nodule slices of these plants produced isoxanthopterin when incubated with pterin. Nodule crude extracts of G. soja had high levels of xanthine dehydrogenase activity. Both Glycine max and G. soja plants were found to produce ureides when plants were inoculated with fast-growing R. fredii. The two methods described here can be used to discriminate ureide producers from amide producers as well as detect nitrogen-fixing legumes which have altered ureide metabolism. A nodulated legume that lacks xanthine dehydrogenase activity as demonstrated by the pterin assay cannot produce ureides since ureide synthesis has been shown to require xanthine dehydrogenase activity both in vivo and in vitro. A nodulated legume that remains green during allopurinol treatment also lacks ureide synthesis since the leaves of ureide-producing legumes are very chlorotic following allopurinol treatment.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge