Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Direct 2019-Nov

Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Jane Fudyma
Jamee Lyon
Roya AminiTabrizi
Hans Gieschen
Rosalie Chu
David Hoyt
Jennifer Kyle
Jason Toyoda
Nikola Tolic
Heino Heyman

Märksõnad

Abstraktne

Sphagnum mosses dominate peatlands by employing harsh ecosystem tactics to prevent vascular plant growth and microbial degradation of these large carbon stores. Knowledge about Sphagnum-produced metabolites, their structure and their function, is important to better understand the mechanisms, underlying this carbon sequestration phenomenon in the face of climate variability. It is currently unclear which compounds are responsible for inhibition of organic matter decomposition and the mechanisms by which this inhibition occurs. Metabolite profiling of Sphagnum fallax was performed using two types of mass spectrometry (MS) systems and 1H nuclear magnetic resonance spectroscopy (1H NMR). Lipidome profiling was performed using LC-MS/MS. A total of 655 metabolites, including one hundred fifty-two lipids, were detected by NMR and LC-MS/MS-329 of which were novel metabolites (31 unknown lipids). Sphagum fallax metabolite profile was composed mainly of acid-like and flavonoid glycoside compounds, that could be acting as potent antimicrobial compounds, allowing Sphagnum to control its environment. Sphagnum fallax metabolite composition comparison against previously known antimicrobial plant metabolites confirmed this trend, with seventeen antimicrobial compounds discovered to be present in Sphagnum fallax, the majority of which were acids and glycosides. Biological activity of these compounds needs to be further tested to confirm antimicrobial qualities. Three fungal metabolites were identified providing insights into fungal colonization that may benefit Sphagnum. Characterizing the metabolite profile of Sphagnum fallax provided a baseline to understand the mechanisms in which Sphagnum fallax acts on its environment, its relation to carbon sequestration in peatlands, and provide key biomarkers to predict peatland C store changes (sequestration, emissions) as climate shifts.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge