Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oxidative Medicine and Cellular Longevity 2019

Astrocyte-Targeted Transporter-Utilizing Derivatives of Ferulic Acid Can Have Multifunctional Effects Ameliorating Inflammation and Oxidative Stress in the Brain.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Ahmed Montaser
Johanna Huttunen
Sherihan Ibrahim
Kristiina Huttunen

Märksõnad

Abstraktne

Ferulic acid (FA) is a natural phenolic antioxidant, which can exert also several other beneficial effects to combat neuroinflammation and neurodegenerative diseases, such as Alzheimer's disease. One of these properties is the inhibition of several enzymes and factors, such as β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), cyclooxygenases (COXs), lipoxygenases (LOXs), mammalian (or mechanistic) target for rapamycin (mTOR), and transcription factor NF-κB. We have previously synthesized three L-type amino acid transporter 1- (LAT1-) utilizing FA-derivatives with the aim to develop brain-targeted prodrugs of FA. In the present study, the cellular uptake and bioavailability of these FA-derivatives were evaluated in mouse primary astrocytic cell cultures together with their inhibitory effects towards BACE1, COX/LOX, mTOR, NF-κB, acetylcholinesterase (AChE), and oxidative stress. According to the results, all three FA-derivatives were taken up 200-600 times more effectively at 10 μM concentration into the astrocytes than FA, with one derivative having a high intracellular bioavailability (Kp,uu), particularly at low concentrations. Moreover, all of the derivatives were able to inhibit BACE1, COX/LOX, AChE, and oxidative stress measured as decreased cellular lipid peroxidation. Furthermore, one of the derivatives modified the total mTOR amount. Therefore, these derivatives have the potential to act as multifunctional compounds preventing β-amyloid accumulation as well as combating inflammation and reducing oxidative stress in the brain. Thus, this study shows that converting a parent drug into a transporter-utilizing derivative not only may increase its brain and cellular uptake, and bioavailability but can also broaden the spectrum of pharmacological effects elicited by the derivative.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge