Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Asia Pacific Allergy 2020-Sep

Heterogeneous Perfusion in COVID-19 and High Altitude Pulmonary Edema: A Review of Two Cases Followed by Implications for Hypoxic Pulmonary Vasoconstriction, Thrombosis Development, Ventilation Perfusion Mismatch and Emergence of Treatment Approaches

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Isaac Solaimanzadeh

Märksõnad

Abstraktne

Coronavirus disease 2019 (COVID-19) has been compared to high altitude pulmonary edema (HAPE). Multiple similarities between the two conditions were drawn in the past. This article seeks to further clarify potential underlying mechanisms related to hypoxia and pulmonary vascular responses. It does so by looking at perfusion imaging of patients with COVID-19 and comparing them with patterns observed in HAPE and hypoxic exposure. Two separate clinical cases are reviewed. The salient aspect of each case that is emphasized is the perfusion scintigraphy results that revealed heterogeneous perfusion patterns in both patients. Heterogeneous or non-homogeneous perfusion is also observed in HAPE. A detailed clinical course of each patient is described. Medications utilized to treat the conditions are outlined as well as laboratory parameters and clinical findings. Interestingly, both of these patients were treated with calcium channel blockers and this class of medications is utilized to prevent HAPE as well. Discussion following the case presentations attempts to contextualize possible implications of this and other studies on the broader pathophysiology of COVID-19 disease. Findings related to pathophysiologic patterns and treatment strategies are also described. Micro-thrombi formation has been reported in both COVID-19 and HAPE as well and may be an accessory complication of perfusion compromise. In a separate study, vasodilatation with calcium channel blocker (CCB) therapy has been associated with improved mortality in COVID-19 and potential pathophysiologic mechanisms were previously presented. This case report provides further clinical findings that support the notion that perfusion deficits are an integral component of hypoxia in COVID-19. It also advances the basis for use of vasodilator therapy as part of treatment regimens in COVID-19. Vasodilators may improve micro-perfusion. In this way, oxygenation may be promoted by decreasing impedance and improving flow via the alveolar-capillary unit.

Keywords: coronavirus disease 2019 (covid-19); covid-19; covid-19 management; covid-19 respiratory failure; high altitude pulmonary edema; hypoxic injury; hypoxic pulmonary vasoconstriction; pulmonary vasodilation; sars-cov-2 (severe acute respiratory syndrome coronavirus -2); ventilation perfusion mismatch.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge