Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 2020-May

Oxidative stress and antioxidant response in rainbow trout fry exposed to acute hypoxia is affected by selenium nutrition of parents and during first exogenous feeding.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Link salvestatakse lõikelauale
Pauline Wischhusen
Laurence Larroquet
Thierry Durand
Camille Oger
Jean-Marie Galano
Amandine Rocher
Claire Vigor
Philip Prabhu
Vincent Véron
Mickael Briens

Märksõnad

Abstraktne

Selenium (Se) deficiency is a problem widely encountered in humans and terrestrial livestock production with increasing attention also in aquaculture. Se supports the antioxidant system, which becomes especially important during stressful conditions. In the present study, the effect of Se-supplementation in broodstock and fry diets on the performance and antioxidant metabolism of rainbow trout fry under acute hypoxia was investigated. Rainbow trout broodstock were fed plant-ingredient based diets either without any Se-supplementation (Se level: 0.3 mg/kg) or supplemented with Se supplied as sodium selenite or as hydroxy-selenomethionine (Se level: 0.6 mg/kg respectively) for 6 months prior to spawning. The progenies were subdivided into three triplicate feeding groups and fed diets with similar Se levels compared to the parental diets, resulting in a 3x3 factorial design. After 11 weeks of feeding, the fry were either sampled or subjected to a hypoxic stress challenge. One hundred fish were transferred to tanks containing water with a low oxygen level (1.7 ± 0.2 ppm) and monitored closely for 30 min. When a fish started to faint it was recorded and transferred back to normoxic water. Direct fry feeding of the hydroxy-selenomethionine supplemented diet improved the resistance towards the hypoxic stress. On the contrary, fry originating from parents fed Se-supplemented diets showed a lower stress resistance compared to fry originating from parents fed the control diet. Fry subjected to hypoxia showed elevated oxidative stress with decreased reduced glutathione (GSH) levels and increased isoprostanes (IsoP) and phytoprostanes (PhytoP) levels produced by lipid peroxidation of polyunsaturated fatty acids (PUFA), arachidonic and α-linolenic acids respectively. Increased mRNA expression of transcription factors (nrf2, nfκb, keap1X2) and decreased mRNA expression of antioxidant enzymes (trxr, sod, gstπ) indicated a transcriptional regulation of the antioxidant response. In stressed fry, the mRNA expression of several antioxidant genes including gr, msr and gstπ was found to be higher when fed the control diet compared to the sodium selenite treatment, with a contrary effect for parental and direct Se nutrition on gpx. The long-term parental effect becomes of greater importance in stressed fry, where more than half of the genes were significantly higher expressed in the control compared to the selenite supplemented group.

Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge