Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

alpha mannosidase/müürlook

Link salvestatakse lõikelauale
ArtiklidKliinilistes uuringutesPatendid
Leht 1 alates 18 tulemused
We isolated cDNA corresponding to open reading frame (ORF) 16 of the 81 kb contig of Arabidopsis thaliana chromosome III [Quigley., Nucleic Acids Res., 24, 4313-4318 (1996)] and expressed alpha-mannosidase activity in tobacco suspension-cultured cells, which revealed that ORF16 encodes

Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
In eukaryotes, class I alpha-mannosidases are involved in early N-glycan processing reactions and in N-glycan-dependent quality control in the endoplasmic reticulum (ER). To investigate the role of these enzymes in plants, we identified the ER-type alpha-mannosidase I (MNS3) and the two

Two Arabidopsis thaliana Golgi alpha-mannosidase I enzymes are responsible for plant N-glycan maturation.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
N-Glycosylation is an important post-translational modification that occurs in many secreted and membrane proteins in eukaryotic cells. Golgi alpha-mannosidase I hydrolases (MANI) are key enzymes that play a role in the early N-glycan modification pathway in the Golgi apparatus. In Arabidopsis
To ensure that aberrantly folded proteins are cleared from the endoplasmic reticulum (ER), all eukaryotic cells possess a mechanism known as endoplasmic reticulum-associated degradation (ERAD). Many secretory proteins are N-glycosylated, and despite some recent progress, little is known about the
N-glycosylation is one of the major post-translational modifications of proteins in eukaryotes; however, the processing reactions of oligomannosidic N-glycan precursors leading to hybrid-type and finally complex-type N-glycans are not fully understood in plants. To investigate the role of Golgi
The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus

Identification of a Golgi-localised GRIP domain protein from Arabidopsis thaliana.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
A family of Golgi-localised molecules was recently described in animals and fungi possessing extensive coiled regions and a short (approximately 40 residues) conserved C-terminal domain, called the GRIP domain, which is responsible for their location to this organelle. Using the model plant
UNASSIGNED Arabidopsis N-glycan processing mutants provide the basis for tailoring recombinant enzymes for use as replacement therapeutics to treat lysosomal storage diseases, including N-glycan mannose phosphorylation to ensure lysosomal trafficking and efficacy. Functional recombinant human
N-glycosylation is an essential protein modification that plays roles in many diverse biological processes including protein folding, quality control and protein interactions. Despite recent advances in characterization of the N-glycosylation and N-glycan processing machinery

Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
In all eukaryotes N-glycosylation is the most prevalent protein modification of secretory and membrane proteins. Although the N-glycosylation capacity and the individual steps of the N-glycan processing pathway have been well studied in the model plant Arabidopsis thaliana, little attention has been
Defects in N-glycosylation and N-glycan processing frequently cause alterations in plant cell wall architecture, including changes in the structure of cellulose, which is the most abundant plant polysaccharide. KORRIGAN1 (KOR1) is a glycoprotein enzyme with an essential function during cellulose
N-glycosylation of proteins plays an important role in the determination of the fate of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Specific oligosaccharide structures recruit molecular chaperones that promote folding or mannose-binding lectins that assist in the clearance of
N-Glycan processing is one of the most important cellular protein modifications in plants and as such is essential for plant development and defense mechanisms. The accuracy of Golgi-located processing steps is governed by the strict intra-Golgi localization of sequentially acting glycosidases and

A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
To better understand the mechanisms governing cellular traffic, storage of various metabolites, and their ultimate degradation, Arabidopsis thaliana vacuole proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from
With nearly 140 α-glycosidases in 14 different families, plants are well equipped with enzymes that can break the α-glucosidic bonds in a large diversity of molecules. Here, we introduce activity-based protein profiling (ABPP) of α-glycosidases in plants using α-configured cyclophellitol aziridine
Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge