Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

fructose/riis

Link salvestatakse lõikelauale
ArtiklidKliinilistes uuringutesPatendid
Leht 1 alates 46 tulemused
Fructose-2,6-bisphosphate (Fru-2,6-bisP) was evaluated as a potential marker for the dormancy-breaking phase or the germination phase before pericarp splitting in red rice (Oryza sativa). During 4 h of imbibition at 30[deg]C, Fru-2,6-bisP of dehulled dormant and nondormant seeds increased to 0.26
Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1) reversibly converts fructose 6-phosphate and pyrophosphate to fructose 1, 6-bisphosphate and orthophosphate during glycolysis, and has diverse functions in plants. However, mechanisms underlying the regulation of starch metabolism by
This study was designed to evaluate the effect of an anthocyanin-rich extract from black rice on hyperlipidemia and insulin resistance in fructose-fed rats. Rats fed fructose diet for 4 weeks exhibited significantly higher plasma insulin levels and lower insulin sensitivity than the control rats fed
During photosynthesis, triose-phosphates (trioseP) exported from the chloroplast to the cytosol are converted to sucrose via cytosolic fructose-1,6-bisphosphatase (cFBPase). Expression analysis in rice suggests that OscFBP1 plays a major role in the cytosolic conversion of trioseP to sucrose in
The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on
Monosaccharide transporters mediate the membrane transport of a variable range of monosaccharides, which plays a crucial role in sugar distribution throughout the plant. To investigate the significance of monosaccharide transporters for rice (Oryza sativa L.) seed development, cDNA of a new putative
Fructokinases (EC 2.7.1.4) may play an important role in carbohydrate metabolism of Oryza sativa L. (rice) seedlings under anoxia. We present here the molecular and biochemical characterizations of two rice fructokinases, namely OsFK1 and OsFK2. The results show that, at both a transcriptional and a
Nine varieties of pigmented rice (Oryza sativa L.) seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography (GC) TOF-MS, to measure antioxidant
Rice cultivar "Weiyou916" (Oryza sativa L. ssp. Indica) were cultured with control (10 mM NO3-) and nitrate deficient solution (0 mM NO3-) for four weeks. Nitrogen (N) deficiency significantly decreased the content of N and P, dry weight (DW) of the shoots and roots, but increased the ratio of root
Metabolite profiling of rice leaves (Oryza sativa cv. Ilmi) was performed to investigate the short-term responses to different light-emitting diode (LED) lights, blue (B), green (G), red (R), white (W), shade (S), by using gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and

Fructose 1,6-bisphosphate aldolase activity in leaves of a rice mutant selected for enhanced lysine.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Unknown proteins isolated from mutant tissues of rice (Oryza sativa L.) recovered from inhibitor selections were subsequently peptide microsequenced. Database searches putatively identified one peptide as fructose 1,6-bisphosphate aldolase (EC 4.1.2.13). Tissues of mutant rice, PI564784, and wild

Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.).

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Cell-wall invertase (CIN) catalyzes the hydrolysis of sucrose into glucose and fructose for the supply of carbohydrates to sink organs via an apoplastic pathway. To study the CIN genes in rice (Oryza sativa L.), we isolated cDNA clones showing amino acid similarity to the plant cell wall invertase
Salinity exerted a distinctly differential effect on fructose-1,6-bisphosphatase (EC. 3.1.3.11) isolated from salt-sensitive and salt-tolerant rice (Oryza sativa) varieties. Cytosolic and chloroplastic isoforms of the enzyme from salt-sensitive rice seedlings exhibited decreased catalytic activity
To avoid disproportionate usage of chemicals in agriculture, an alternative eco-friendly strategy is required to improve soil fertility, and enhance crop productivity. Therefore, the present study demonstrates the role of plant beneficial rhizobacteria viz., Paenibacillus lentimorbus B-30488
CONCLUSIONS Decreased PFPase activity in rice perturbs the equilibration of carbon metabolism during grain filling but has no visible phenotypic effects during the vegetative and reproductive growth stages. Starch is a primary energy reserve for various metabolic processes in plant. Despite much
Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge