Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

lanthanum/müürlook

Link salvestatakse lõikelauale
ArtiklidKliinilistes uuringutesPatendid
Leht 1 alates 28 tulemused
The effects of triacontanol (TRIA), applied singly or in combination with cerium nitrate and lanthanum nitrate, on bolting of Arabidopsis thaliana were studied. Triacontanol (0.1 to 0.6 microM) added to the culture medium induced early bolting. TRIA (0.3 microM) applied with low concentrations of
The mechanism of lanthanum (La3+) toxicity on root growth of Arabidopsis was studied by physiological and genetic approaches using Landsberg erecta (Ler) × Columbia (Col) recombinant inbred lines (RILs) and other natural accessions. Quantitative trait locus (QTL) analyses revealed

Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
The effects of cerium and lanthanum on the vegetative growth, floral initiation and reproductive growth of Arabidopsis thaliana were studied. Addition of cerium nitrate (0.5-10 µM) or lanthanum nitrate (0.5-50 µM) to the culture medium significantly increased the lengths of primary roots, but had no

Lanthanum Inhibits Primary Root Growth by Repressing Auxin Carrier Abundances in Arabidopsis.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Lanthanum (La) is one of rare earth elements that was used as a crop growth stimulants; however, high concentration of La markedly inhibited plant growth. Our previous study indicated that, although La induced the expression of auxin biosynthesis-related genes, it markedly repressed primary root

Mitochondrial morphology transition is an early indicator of subsequent cell death in Arabidopsis.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Mitochondrial morphology and dynamics were investigated during the onset of cell death in Arabidopsis thaliana. Cell death was induced by either chemical (reactive oxygen species (ROS)) or physical (heat) shock. Changes in mitochondrial morphology in leaf tissue, or isolated protoplasts, each
TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis

Effect of hypergravity stimulus on XTH gene expression in Arabidopsis thaliana.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Hypergravity stimulus suppresses plant shoot growth by making the cell wall rigid. Xyloglucan endotransglucosylase/hydrolase (XTH) is involved in determining the rigidity of cell walls. We demonstrated that hypergravity influenced the expression of some XTH genes in shoots of Arabidopsis thaliana
Photosystem II (PSII) from Arabidopsis thaliana treated by lanthanum (La(3+)), cerium (Ce(3+)), and neodymium (Nd(3+)) were isolated to investigate the effects of 4f electron characteristics and alternation valence of rare earth elements (REEs) on PSII function regulation comparatively. Results

Rare earth elements regulate the endocytosis and DNA methylation in root cells of Arabidopsis thaliana.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
With increasing application of rare earth elements (REEs), the resulting environmental safety has attracted extensive attention. When REEs act on plant leaves, REEs can initiate endocytosis in leaf cells, causing more REEs enter plant cells and then severe damage to plants. But when REEs directly
Fluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca(2+)](cyt)) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca(2+)](cyt) were observed in response to
Calcineurin B-like protein 9 (CBL9) plays important roles in response to ABA, K+ deprivation in plants. However, whether CBL9 modulates plant adaptation to low-temperature stress is elusive. In this study, we demonstrated that the cbl9 mutants increased freezing tolerance under both

Calcium signalling in Arabidopsis thaliana responding to drought and salinity.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Changes in cytosolic free calcium concentration ([Ca2+]cyt) in response to mannitol (drought) and salt treatments were detected in vivo in intact whole Arabidopsis seedlings. Transient elevations of [Ca2+]cyt to around 1.5 microM were observed, and these were substantially inhibited by pretreatment
Cytosolic Ca(2+) in guard cells plays an important role in stomatal movement responses to environmental stimuli. These cytosolic Ca(2+) increases result from Ca(2+) influx through Ca(2+)-permeable channels in the plasma membrane and Ca(2+) release from intracellular organelles in guard cells.
Malate transporters play a critical role in aluminum (Al) tolerance responses for some plant species, such as Arabidopsis (Arabidopsis thaliana). Here, we further characterize AtALMT1, an Arabidopsis aluminum-activated malate transporter, to clarify its specific role in malate release and Al stress
Cold shock triggers an immediate rise in the cytosolic free calcium concentration ([Ca2+]cyt) in Arabidopsis thaliana and this cold-induced elevation of [Ca2+]cyt is inhibited by lanthanum or EGTA. It is suggested that intracellular calcium mainly contributes to the cold-induced [Ca2+]cyt response
Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge