Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phytic acid/riis

Link salvestatakse lõikelauale
ArtiklidKliinilistes uuringutesPatendid
Leht 1 alates 29 tulemused
The low phytic acid ( lpa) rice ( Oryza sativa L.) mutant Os-lpa-MH86-1, resulting from the mutation of the putative sulfate transporter gene OsSULTR3;3, was crossed with a commercial rice cultivar. The obtained progenies of generations F4 to F7 were subjected to a nontargeted metabolite profiling
Phytic acid, myo-inositol-hexakisphosphate (InsP(6)), is a storage form of phosphorus in plants. Despite many physiological investigations of phytic acid accumulation and storage, little is known at the molecular level about its biosynthetic pathway in plants. Recent work has suggested two pathways.
Dietary phytic acid is a major causative factor for low Zn bioavailability in many cereal- and legume-based diets. The bioavailability of Zn in seed of low phytic acid (lpa) variants of maize ( Zea mays L.), rice ( Oryza sativa L.), and barley ( Hordeum vulgare L.) was evaluated using a suckling rat
In plants, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid (PA), is a major component of organic phosphorus (P), and accounts for up to 85% of the total P in seeds. In rice (Oryza sativa L.), PA mainly accumulates in rice bran, and chelates mineral cations, resulting in
Development of rice cultivars with low phytic acid (lpa) is considered as a primary strategy for biofortification of zinc (Zn) and iron (Fe). Here, two rice genotypes (XS110 and its lpa mutant) were used to investigate the effect of P supplies on accumulations and distributions of PA, Zn, and Fe in
The low phytic acid ( lpa) rice mutant Os-lpa-MH86-1, exhibiting a mutation-induced metabolite signature (i.e., increased levels of sugars, sugar alcohols, amino acids, phytosterols, and biogenic amines), was crossed with two commercial wild-type cultivars. The resulting progenies of generation
The seed proteome of a low phytic acid (lpa) rice line (Os-lpa-XS110-1), developed as a novel food source, was compared to that of its parental line, Xiushui 110 (XS-110). Analysis by surfaced enhanced laser desorption ionization-time-of-flight mass spectrometry (SELDI-TOF MS) and two-dimensional

Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.).

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate), or its salt form, phytate, is commonly regarded as the major anti-nutritional component in cereal and legume grains. Breeding of low phytic acid (lpa) crops has recently been considered as a potential way to increase nutritional quality of
The impact of cross-breeding two lpa rice mutants on the content of phytic acid and the metabolite profile of the resulting double mutant was investigated. Progenies resulting from the cross of Os-lpa-XS110-1, a rice mutant carrying the myo-inositol (OsMIK) mutated gene, and Os-lpa-XS110-2 with the

Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.).

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Phytic acid (PA) is an anti-nutrient present in cereals and pulses. It is known to reduce mineral bioavailability and inhibit starch digesting α-amylase (which requires calcium for activity) in the human gut. In principle, higher the PA, lesser is the rate of starch hydrolysis. It is
Development of bakery products containing rice ( Oryza sativa, Linn.) and teff ( Eragrostis tef) could have potential health benefits due to their gluten free nature. Nine experimental runs were generated using custom design by JMP 8 software. The effect of two factors, rice variety
The manipulation of seed phosphorus is important for seedling growth and environmental P sustainability in agriculture. The mechanism of regulating P content in seed, however, is poorly understood. To study regulation of total P, we focused on phytic acid (inositol hexakisphosphate; InsP₆)
This report addresses the safety of cosmetic ingredients derived from rice, Oryza sativa. Oils, Fatty Acids, and Waxes: Rice Bran Oil functions in cosmetics as a conditioning agent--occlusive in 39 formulations across a wide range of product types. Rice Germ Oil is a skin-conditioning
Phytic acid (myo-inositol hexakisphosphate; InsP6) is the storage compound of phosphorus and many mineral elements in seeds. To determine the role of InsP6 in the accumulation and distribution of mineral elements in seeds, we performed fine mappings of mineral elements through synchrotron-based
Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid
Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge