Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

resveratrol/harilik müürlook

Link salvestatakse lõikelauale
ArtiklidKliinilistes uuringutesPatendid
Leht 1 alates 24 tulemused
Ribonucleotide reductase (RNR) is a key enzyme for DNA synthesis since it provides cells with deoxyribonucleotides, the DNA precursors. Class I alpha2beta2 RNRs contain a dinuclear iron center and an essential tyrosyl radical in the beta2 component (protein R2). This is also true for the purified

A New Anti-Aging Lysophosphatidic Acid from Arabidopsis thaliana.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
BACKGROUND Aging is a risk factor of age-related diseases. With the increasing number of patients, serious consequences, and heavy economic burden, demands for drugs used to treat agerelated diseases have increased. As such, anti-aging substances should be isolated to develop drugs for the
Dinucleoside polyphosphates are considered as signal molecules that may evoke response of plant cells to stress. Other compounds whose biological effects have been recognized are cyclodextrins. They are cyclic oligosaccharides that chemically resemble the alkyl-derived pectic oligosaccharides

Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Resveratrol is a naturally occurring defense compound produced by a limited number of plants in response to stresses. Besides cardiovascular benefits, this health-promoting compound has been reported to extend life spans in yeasts, flies, worms, and fish. To biosynthesize resveratrol de novo,
Resveratrol synthesis from p-coumarate was analyzed in different Saccharomyces cerevisiae strains expressing the 4-coumaroyl-coenzyme A ligase (4CL1) from Arabidopsis thaliana and the stilbene synthase (STS) from Vitis vinifera and compared between yeast cultures growing in rich or synthetic medium.
Damage-associated molecular patterns (DAMPs) are endogenous molecules that can activate the plant innate immunity. DAMPs can derive from the plant cell wall, which is composed of a complex mixture of cellulose, hemicellulose, and pectin polysaccharides. Fragments of pectin, called
Resveratrol is an important antioxidant that confers several beneficial effects on human health. 4-coumarate coenzyme A ligase (4CL) and resveratrol synthase (RS) are key rate-limiting enzymes in the biosynthetic pathway of resveratrol. Using gene fusion technology, the fusion gene, 4CL::RS, was
Resveratrol is a polyphenolic compound with diverse beneficial effects on human health. Red wine is the major dietary source of resveratrol but the amount that people can obtain from wines is limited. To increase the resveratrol production in wines, two expression vectors carrying 4-coumarate:

Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Resveratrol, a polyphenol compound found in grape skins, has been proposed to account for the beneficial effects of red wine against heart disease. To produce resveratrol in Saccharomyces cerevisiae, four heterologous genes were introduced: the phenylalanine ammonia lyase gene from Rhodosporidium
Resveratrol is a well-known polyphenol present in red wine and exerts antioxidative and anti-carcinogenic effects on the human body. To produce resveratrol in a food-grade yeast, the 4-coumarate:coenzyme A ligase gene (4CL1) from Arabidopsis thaliana and stilbene synthase gene (STS) from Arachis

De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Resveratrol is a natural antioxidant compound, used as food supplement and cosmetic ingredient. Microbial production of resveratrol has until now been achieved by supplementation of expensive substrates, p-coumaric acid or aromatic amino acids. Here we engineered the yeast Saccharomyces cerevisiae
Background: Resveratrol is a plant secondary metabolite with diverse, potential health-promoting benefits. Due to its nutraceutical merit, bioproduction of resveratrol via microbial engineering has gained increasing attention and provides
Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore,

Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of

Tailoring tobacco hairy root metabolism for the production of stilbenes.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Tobacco hairy root (HR) cultures, which have been widely used for the heterologous production of target compounds, have an innate capacity to bioconvert exogenous t-resveratrol (t-R) into t-piceatannol (t-Pn) and t-pterostilbene (t-Pt). We established genetically engineered HR carrying the gene
Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge