Estonian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

trimethylamine/põletik

Link salvestatakse lõikelauale
Leht 1 alates 220 tulemused

Effect of trimethylamine N-oxide on inflammation and the gut microbiota in Helicobacter pylori-infected mice.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Diet is one of the factors contributing to symptom of Helicobacter pylori (H. pylori) infection. Trimethylamine N-oxide (TMAO), a diet-related microbial metabolite, is associated with inflammatory and metabolic diseases. The aim of this study is to investigate the effects of TMAO intake on
A gut-microbiota-dependent metabolite of L-carnitine, trimethylamine-N-oxide (TMAO), has been recently discovered as an independent and dose-dependent risk factor for cardiovascular disease (CVD). This study aims to investigate the effects of pterostilbene on reducing TMAO formation
The gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has been regarded as one of the potent risk factors of cardiovascular events and diabetes. However, its association with possible inflammatory mediators has not been revealed yet. In the current meta-analysis, we
BACKGROUND Trimethylamine-N-oxide (TMAO) has recently been identified as a novel and independent risk factor for promoting atherosclerosis through inducing vascular inflammation. However, the exact mechanism is currently unclear. Studies have established a central role of nucleotide-binding
A substantial proportion of patients with common variable immunodeficiency (CVID) have inflammatory and autoimmune complications of unknown etiology. We have previously shown that systemic inflammation in CVID correlates with their gut microbial dysbiosis. The gut microbiota dependent metabolite

Choline metabolite, trimethylamine N-oxide (TMAO), is associated with inflammation in psoriatic arthritis.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
Dietary intake of choline has been linked to systemic inflammation through the microbial production of two metabolites, trimethylamine (TMA) and trimethylamine-N-oxide (TMAO). Herein we explore the association between choline metabolites and inflammation in psoriatic arthritis (PsA)

Trimethylamine-N-oxide: A Novel Biomarker for the Identification of Inflammatory Bowel Disease.

Ainult registreeritud kasutajad saavad artikleid tõlkida
Logi sisse
BACKGROUND The gastrointestinal (GI) microbiome is recognized for potential clinical relevance in inflammatory bowel disease (IBD). Data suggest that there is a disease-dependent loss of microbial diversity in IBD. Trimethylamine-N-oxide (TMAO) is generated by GI anaerobes through the digestion of
Trimethylamine N-oxide (TMAO) is a biologically active molecule generated by the gut microbiota. Accumulating evidences have indicated a close association between high plasma TMAO levels and the risk of developing atherosclerosis (AS). AS is considered a chronic inflammatory disease initiated by
Vascular endothelial dysfunction, a characteristic of the aging process, is an important risk factor for cardiovascular disease in aging. Although, vascular inflammation and oxidative stress are major contributors to endothelial dysfunction in aging, the underlying mechanisms during the aging
BACKGROUND Trimethylamine-N-oxide (TMAO) is a metabolite of carnitine, choline, and phosphatidylcholine, which is inversely associated with survival of cardiovascular disease (CVD) patients. OBJECTIVE We examined the associations of diet with plasma concentrations of TMAO, choline, and betaine and
OBJECTIVE Trimethylamine N-oxide (TMAO) is a product of metabolism of phosphatidylcholine (lecithin) and carnitine by the intestinal microbiome. Elevated serum concentrations of TMAO have been linked to adverse cardiovascular outcomes in the general population. We examined correlates of serum TMAO
Carnitine, a dietary quaternary amine mainly from red meat, is metabolized to trimethylamine (TMA) by gut microbiota and subsequently oxidized to trimethylamine-N-oxide (TMAO) by host hepatic enzymes, flavin monooxygenases (FMOs). The objective of this study aims to investigate the effects of
Trimethylamine N-oxide (TMAO), a compound derived from diet and metabolism by the gut microbiome, has been associated with several chronic diseases, although the mechanisms of action are not well understood and few human studies have investigated microbes involved in its
Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote inflammation in peripheral tissues and the central nervous system (CNS), contributing to the pathogenesis of various human diseases. Here, we examined whether the presence of high levels of circulating
BACKGROUND Intestinal microbiota have been found to be linked to cardiovascular disease via conversion of the dietary compounds choline and carnitine to the atherogenic metabolite TMAO (trimethylamine-N-oxide). Specifically, a vegan diet was associated with decreased plasma TMAO levels and nearly
Liitu meie
facebooki lehega

Kõige täiuslikum ravimtaimede andmebaas, mida toetab teadus

  • Töötab 55 keeles
  • Taimsed ravimid, mida toetab teadus
  • Maitsetaimede äratundmine pildi järgi
  • Interaktiivne GPS-kaart - märgistage ürdid asukohas (varsti)
  • Lugege oma otsinguga seotud teaduspublikatsioone
  • Otsige ravimtaimi nende mõju järgi
  • Korraldage oma huvisid ja hoidke end kursis uudisteuuringute, kliiniliste uuringute ja patentidega

Sisestage sümptom või haigus ja lugege ravimtaimede kohta, mis võivad aidata, tippige ürdi ja vaadake haigusi ja sümptomeid, mille vastu seda kasutatakse.
* Kogu teave põhineb avaldatud teaduslikel uuringutel

Google Play badgeApp Store badge