Persian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Nephrology 2005-Nov

Hypothyroidism attenuates protein tyrosine nitration, oxidative stress and renal damage induced by ischemia and reperfusion: effect unrelated to antioxidant enzymes activities.

فقط کاربران ثبت نام شده می توانند مقالات را ترجمه کنند
ورود به سیستم / ثبت نام
پیوند در کلیپ بورد ذخیره می شود
Verónica M Tenorio-Velázquez
Diana Barrera
Martha Franco
Edilia Tapia
Rogelio Hernández-Pando
Omar Noel Medina-Campos
José Pedraza-Chaverri

کلید واژه ها

خلاصه

BACKGROUND

It has been established that hypothyroidism protects rats against renal ischemia and reperfusion (IR) oxidative damage. However, it is not clear if hypothyroidism is able to prevent protein tyrosine nitration, an index of nitrosative stress, induced by IR or if antioxidant enzymes have involved in this protective effect. In this work it was explored if hypothyroidism is able to prevent the increase in nitrosative and oxidative stress induced by IR. In addition the activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was studied. Control and thyroidectomized (HTX) rats were studied 24 h of reperfusion after 60 min ischemia.

METHODS

Male Wistar rats weighing 380 +/- 22 g were subjected to surgical thyroidectomy. Rats were studied 15 days after surgery. Euthyroid sham-operated rats were used as controls (CT). Both groups of rats underwent a right kidney nephrectomy and suffered a 60 min left renal ischemia with 24 h of reperfusion. Rats were divided in four groups: CT, HTX, IR and HTX+IR. Rats were sacrificed and samples of plasma and kidney were obtained. Blood urea nitrogen (BUN) and creatinine were measured in blood plasma. Kidney damage was evaluated by histological analysis. Oxidative stress was measured by immunohistochemical localization of protein carbonyls and 4-hydroxy-2-nonenal modified proteins. The protein carbonyl content was measured using antibodies against dinitrophenol (DNP)-modified proteins. Nitrosative stress was measured by immunohistochemical analysis of 3-nitrotyrosine modified proteins. The activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was measured by spectrophotometric methods. Multiple comparisons were performed with ANOVA followed by Bonferroni t test.

RESULTS

The histological damage and the rise in plasma creatinine and BUN induced by IR were significantly lower in HTX+IR group. The increase in protein carbonyls and in 3-nitrotyrosine and 4-hydroxy-2-nonenal modified proteins was prevented in HTX+IR group. IR-induced decrease in renal antioxidant enzymes was essentially not prevented by HTX in HTX+IR group.

CONCLUSIONS

Hypothyroidism was able to prevent not only oxidative but also nitrosative stress induced by IR. In addition, the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase seem not to play a protective role in this experimental model.

به صفحه فیس بوک ما بپیوندید

کاملترین پایگاه داده گیاهان دارویی با پشتیبانی علمی

  • به 55 زبان کار می کند
  • درمان های گیاهی با پشتوانه علم
  • شناسایی گیاهان توسط تصویر
  • نقشه GPS تعاملی - گیاهان را در مکان نشان دهید (به زودی)
  • انتشارات علمی مربوط به جستجوی خود را بخوانید
  • گیاهان دارویی را با توجه به اثرات آنها جستجو کنید
  • علایق خود را سازماندهی کنید و با تحقیقات اخبار ، آزمایشات بالینی و حق ثبت اختراع در جریان باشید

علامت یا بیماری را تایپ کنید و در مورد گیاهانی که ممکن است به شما کمک کنند ، بخوانید ، یک گیاه تایپ کنید و بیماری ها و علائمی را که در برابر آن استفاده می شود ، ببینید.
* کلیه اطلاعات براساس تحقیقات علمی منتشر شده است

Google Play badgeApp Store badge