Persian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2003-May

The azulene-to-naphthalene rearrangement revisited: a DFT study of intramolecular and radical-promoted mechanisms.

فقط کاربران ثبت نام شده می توانند مقالات را ترجمه کنند
ورود به سیستم / ثبت نام
پیوند در کلیپ بورد ذخیره می شود
Roger W Alder
Stephen P East
Jeremy N Harvey
Mark T Oakley

کلید واژه ها

خلاصه

Intramolecular and radical-promoted mechanisms for the rearrangement of azulene to naphthalene are assessed with the aid of density functional calculations. All intramolecular mechanisms have very high activation energies (>/=350 kJ mol(-1) from azulene) and so can only be competitive at temperatures above 1000 degrees C. Two radical-promoted mechanisms, the methylene walk and spiran pathways, dominate the reaction below this temperature. The activation energy for an orbital symmetry-allowed mechanism via a bicyclobutane intermediate is 382 kJ mol(-1). The norcaradiene-vinylidene mechanism that has been proposed in order to explain the formation of small amounts of 1-phenyl-1-buten-3-ynes from flash thermolysis of azulene has an activation energy of 360 kJ mol(-1); subtle features of the B3LYP/6-31G(d) energy surface for this mechanism are discussed. All intermediates and transition states on the spiran and methylene walk radical-promoted pathways have been located at the B3LYP/6-31G(d) level. Interconversion of all n-H-azulyl radicals via hydrogen shifts was also examined, and hydrogen shifts around the five-membered ring are competitive with the mechanisms leading to rearrangement to naphthalene, but those around the seven-membered ring are not. Conversion of a tricyclic radical to the 9-H-naphthyl radical is the rate-limiting transition state on the spiran pathway, and lies 164.0 kJ mol(-1) above that of the 1-H-azulyl radical. The transition state for the degenerate hydrogen shift between the 9-H-azulyl and 10-H-azulyl radicals is 7.4 kJ mol(-1) lower. Partial equilibration of the intermediates in the spiran pathway via this shift may therefore occur, and this can account for the surprising formation of 1-methylnaphthalene from 2-methylazulene. The rate-limiting transition state for the methylene walk pathway involves the concerted transfer of a methylene group from one ring to the other and lies 182.3 kJ mol(-1) above that of the 1-H-azulyl radical. It is shown that rearrangement via a combination of 31% methylene walk and 69% spiran pathways can account semiquantitatively for all the products from 1-(13)C-azulene, 9-(13)C-azulene, and 4,7-(13)C(2)-azulene, in addition to accounting for the products from methylazulenes, and the formation of naphthalene-d(0) and -d(2) from azulene-4-d. It is also pointed out that a small extension to the spiran pathway could provide an alternative explanation for the formation of 1-phenyl-1-buten-3-ynes.

به صفحه فیس بوک ما بپیوندید

کاملترین پایگاه داده گیاهان دارویی با پشتیبانی علمی

  • به 55 زبان کار می کند
  • درمان های گیاهی با پشتوانه علم
  • شناسایی گیاهان توسط تصویر
  • نقشه GPS تعاملی - گیاهان را در مکان نشان دهید (به زودی)
  • انتشارات علمی مربوط به جستجوی خود را بخوانید
  • گیاهان دارویی را با توجه به اثرات آنها جستجو کنید
  • علایق خود را سازماندهی کنید و با تحقیقات اخبار ، آزمایشات بالینی و حق ثبت اختراع در جریان باشید

علامت یا بیماری را تایپ کنید و در مورد گیاهانی که ممکن است به شما کمک کنند ، بخوانید ، یک گیاه تایپ کنید و بیماری ها و علائمی را که در برابر آن استفاده می شود ، ببینید.
* کلیه اطلاعات براساس تحقیقات علمی منتشر شده است

Google Play badgeApp Store badge