13 نتایج
Brachypodium distachyon (Brachypodium) is a powerful model system for studying cereal, bioenergy, forage, and turf grasses. Nucleotide diversity (π) and linkage disequilibrium (LD) in candidate genes involved in the antioxidative pathways in this species are not known. The average π for CAT encoding
BdASR4 expression was up-regulated during abiotic stress and hormone treatments. Plants over-expressing BdASR4 improved drought tolerant. BdASR4 may regulate antioxidant activities and transcript levels of stress-related and abscisic acid-responsive genes. Abiotic stress conditions negatively affect
UNASSIGNED
For the first time, a comprehensive proteome analysis was conducted on Brachypodium leaves under drought stress. Gradual changes in response to drought stress were monitored. Drought is one of the major stress factors that dramatically affect the agricultural productivity worldwide.
Various abiotic stresses, including high salinity, affect the growth and yield of crop plants. We isolated a gene, TaPUB26, from wheat that encodes a protein containing a U-box domain and armadillo (ARM) repeats. The TaPUB26 transcript levels were upregulated by high salinity, temperature, drought
BACKGROUND
Fusarium Head Blight (FHB) caused primarily by Fusarium graminearum (Fg) is one of the major diseases of small-grain cereals including bread wheat. This disease both reduces yields and causes quality losses due to the production of deoxynivalenol (DON), the major type B trichothecene
The TaMP gene from wheat encodes an α-mannosidase induced by salt stress that functions as negative regulator of salt tolerance in plants. Salt stress significantly affects growth and yield of crop plants. The α-mannosidases function in protein folding, trafficking, and endoplasmic
Salicylic acid (SA) plays a role in several physiological processes in plants. Exogenously applied SA is a promising tool to reduce stress sensitivity. However, the mode of action may depend on how the treatment was performed and environmental conditions may alter the effects of SA. In the present
Ubiquitination plays an important role in regulating plant's development and adaptability to abiotic stress. To investigate the possible functions of a wheat monoubiquitin gene Ta-Ub2 in abiotic stress in monocot and compare it with that in dicot, we generated transgenic Brachypodium plants
CONCLUSIONS
A genome-wide investigation identified five B. distachyon ASR genes. BdASR1 may be a transcription factor that confers drought resistance by activating antioxidant systems involving ROS-scavenging enzymes and non-enzymatic antioxidants. Abscisic acid-, stress-, and ripening-induced (ASR)
OBJECTIVE
To compare the effects of gamma-irradiation on biochemical responses and growth, six-week-old Brachypodium plants were chronically exposed to gamma-irradiation for 30 days at various dosages.
METHODS
Growth surveys of Brachypodium plants in response to different dosages of
Heat stress is a detrimental abiotic stress limiting the growth of many plant species and is associated with various cellular and physiological damages. Expansins are a family of proteins which are known to play roles in regulating cell wall elongation and expansion, as well as other growth and
Class III peroxidases are classical secretory plant peroxidases belonging to a large multi-gene family. Class III peroxidases are involved in various physical processes and the response to biotic and abiotic stress to protect plants from environmental adversities. In this study, 151 BdPrx genes were
CONCLUSIONS
The expression of BdWRKY36 was upregulated by drought treatment. BdWRKY36 -overexpressing transgenic tobacco increased drought tolerance by controlling ROS homeostasis and regulating transcription of stress related genes. WRKY transcription factor plays important roles in plant growth,