Finnish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Proteomics 2013-Nov

Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize.

Vain rekisteröityneet käyttäjät voivat kääntää artikkeleita
Kirjaudu sisään Rekisteröidy
Linkki tallennetaan leikepöydälle
Michael L Robbins
Ansuman Roy
Po-Hao Wang
Iffa Gaffoor
Rajandeep S Sekhon
Marcia M de O Buanafina
Jai S Rohila
Surinder Chopra

Avainsanat

Abstrakti

The maize pericarp color1 (p1) gene encodes a Myb transcription factor that regulates the accumulation of 3-deoxyflavonoid pigments called phlobaphenes. The Unstable factor for orange1 (Ufo1) is a dominant epigenetic modifier of the p1 that results in ectopic pigmentation in pericarp. Presence of Ufo1-1 correlates with pleiotropic growth and developmental defects. To investigate the Ufo1-1-induced changes in the proteome, we conducted comparative proteomics analysis of P1-wr; Ufo1-1 pericarps using the 2-D DIGE and iTRAQ techniques. Most of the identified proteins were found to be involved in glycolysis, protein synthesis and modification, flavonoid and lignin biosynthesis and defense responses. Further, immunoblot analysis of internode protein extracts demonstrated that caffeoyl CoA O-methyltransferase (COMT) is post-transcriptionally down regulated in P1-wr; Ufo1-1 plants. Consistent with the down regulation of COMT, the concentrations of p-coumaric acid, syringaldehydes, and lignin are reduced in P1-wr; Ufo1-1 internodes. The reductions in these phenylpropanoids correlate with the bent stalk and stunted growth of P1-wr; Ufo1-1 plants. Finally, over-expression of the p1 in transgenic plants is also correlated with a lodging phenotype and reduced COMT expression. We conclude that ectopic expression of p1 can result in developmental defects that are correlated with altered regulation and synthesis of phenylpropanoid compounds including lignin.

UNASSIGNED

Transcription factors have specific expression patterns that ensure that the biochemical pathways under their control are active in relevant tissues. Plant breeders can select for alleles of transcription factors that produce desirable expression patterns to improve a plant's growth, development, and defense against insects and pathogens. The resulting de novo accumulation of metabolites in plant tissues in significant quantities could have beneficial and/or detrimental consequences. To understand this problem we investigated how the aberrant expression of a classically-studied transcription factor pericarp color1 (p1) which regulates phenylpropanoid metabolism, affects the maize proteome in pericarp tissue. We utilized a dominant mutant Unstable factor for orange 1-1 (Ufo1-1) which reduces the epigenetic suppression of p1 in various tissues throughout the maize plant. Our proteomic analysis shows how, in the presence of Ufo1-1, key enzymes of the glycolytic and shikimic acid pathways were modulated to produce substrates required for flavonoid synthesis. The finding that the presence of Ufo1-1 affected the expression levels of various enzymes in the lignin pathway was of particular interest. We show that lignin was reduced in Ufo1-1 plants expressing p1 and was associated with the post-transcriptional down regulation of CoA O-methyltransferase (COMT) enzyme. We further correlated the down-regulation of COMT with plant bending phenotype in Ufo1-1 plants expressing p1 and to a stalk lodging phenotype of transgenic p1 plants. This study demonstrates that although there can be adverse consequences to aberrantly overexpressing transcription factors, there might also be benefits such as being able to reduce lignin content for biofuel crops. However, more research will be required to understand the genetic and epigenetic regulation of transcription factors and how their expression can be optimized to obtain desired traits in preferred tissue types. This article is part of a Special Issue entitled: Translational Plant Proteomics.

Liity facebook-sivullemme

Täydellisin lääketieteellinen tietokanta tieteen tukemana

  • Toimii 55 kielellä
  • Yrttilääkkeet tieteen tukemana
  • Yrttien tunnistaminen kuvan perusteella
  • Interaktiivinen GPS-kartta - merkitse yrtit sijaintiin (tulossa pian)
  • Lue hakuusi liittyviä tieteellisiä julkaisuja
  • Hae lääkekasveja niiden vaikutusten perusteella
  • Järjestä kiinnostuksesi ja pysy ajan tasalla uutisista, kliinisistä tutkimuksista ja patenteista

Kirjoita oire tai sairaus ja lue yrtteistä, jotka saattavat auttaa, kirjoita yrtti ja näe taudit ja oireet, joita vastaan sitä käytetään.
* Kaikki tiedot perustuvat julkaistuun tieteelliseen tutkimukseen

Google Play badgeApp Store badge