Finnish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2010-Jan

Pharmacokinetic analysis of hypoxia (18)F-fluoromisonidazole dynamic PET in head and neck cancer.

Vain rekisteröityneet käyttäjät voivat kääntää artikkeleita
Kirjaudu sisään Rekisteröidy
Linkki tallennetaan leikepöydälle
Wenli Wang
Nancy Y Lee
Jens-Christoph Georgi
Manoj Narayanan
Jose Guillem
Heiko Schöder
John L Humm

Avainsanat

Abstrakti

This study used pharmacokinetic analysis of (18)F-labeled fluoromisonidazole ((18)F-FMISO) dynamic PET to assist the identification of regional tumor hypoxia and to investigate the relationship among a potential tumor hypoxia index (K(i)), tumor-to-blood ratio (T/B) in the late-time image, plasma-to-tissue transport rate (k(1)), and local vascular volume fraction (beta) for head and neck cancer patients.

METHODS

Newly diagnosed patients underwent a dynamic (18)F-FMISO PET scan before chemotherapy or radiotherapy. The data were acquired in 3 consecutive PET/CT dynamic scan segments, registered with each other and analyzed using pharmacokinetics software. The (K(i), k(1), beta) kinetic parameter images were derived for each patient.

RESULTS

Nine patients' data were analyzed. Representative images of (18)F-FDG PET (of the tumor), CT (of the anatomy), and late-time (18)F-FMISO PET (of the T/B) and parametric images of K(i) (potentially representing tumor hypoxia) are shown. The patient image data could be classified into 3 types: with good concordance between the parametric hypoxia map K(i) and high T/B, with concordant findings between the parametric hypoxia map and low T/B, and with ambiguity between parametric hypoxia map and T/B. Correlation coefficients are computed between each pair of T/B, K(i), k(1), and beta. Data are also presented for other potential hypoxia surrogate measures, for example, k(3) and k(1)/k(2).

CONCLUSIONS

There is a positive correlation of 0.86 between the average T/B and average hypoxia index K(i) of the region of interest. However, because of the statistical photon counting noise in PET and the amplification of noise in kinetic analysis, the direct correlation between the T/B and hypoxia of the individual pixel is not obvious. For a tumor region of interest, there is a slight negative correlation between k(1) and K(i), moderate positive correlation between beta and K(i), but no correlation between beta and k(1).

Liity facebook-sivullemme

Täydellisin lääketieteellinen tietokanta tieteen tukemana

  • Toimii 55 kielellä
  • Yrttilääkkeet tieteen tukemana
  • Yrttien tunnistaminen kuvan perusteella
  • Interaktiivinen GPS-kartta - merkitse yrtit sijaintiin (tulossa pian)
  • Lue hakuusi liittyviä tieteellisiä julkaisuja
  • Hae lääkekasveja niiden vaikutusten perusteella
  • Järjestä kiinnostuksesi ja pysy ajan tasalla uutisista, kliinisistä tutkimuksista ja patenteista

Kirjoita oire tai sairaus ja lue yrtteistä, jotka saattavat auttaa, kirjoita yrtti ja näe taudit ja oireet, joita vastaan sitä käytetään.
* Kaikki tiedot perustuvat julkaistuun tieteelliseen tutkimukseen

Google Play badgeApp Store badge