Finnish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology and Applied Pharmacology 1998-Jan

Toxicity of atractyloside in precision-cut rat and porcine renal and hepatic tissue slices.

Vain rekisteröityneet käyttäjät voivat kääntää artikkeleita
Kirjaudu sisään Rekisteröidy
Linkki tallennetaan leikepöydälle
D K Obatomi
S Brant
V Anthonypillai
P H Bach

Avainsanat

Abstrakti

Atractyloside (ATR) causes acute fatal renal and hepatic necrosis in animals and humans. Precision-cut renal cortical and hepatic slices (200 +/- 15 microns) from adult male Wistar rat and domestic pigs, incubated with ATR (0.2-2.0 mM) for 3 h at 37 degrees C, inhibited pyruvate-stimulated gluconeogenesis in a concentration- and time-dependent manner. p-Aminohippurate accumulation was significantly inhibited in both rat and pig renal cortical slices from 0.2 mM ATR (p < 0.05). There was a small decrease in mitochondrial reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium to formazan in both rat and pig kidney slices, which was significant at > or = 2 mM, but no changes in liver slices from either species. However, cellular ATP was significantly depleted at > or = 0.2 mM ATR in kidney and in liver slices from both species. ATR also caused a marked leakage of lactate dehydrogenase and alkaline phosphatase from both pig and rat kidney slices at all concentrations, but only lactate dehydrogenase was significantly elevated in liver slices from both species. ATR > or = 0.5 mM caused a significant increase in lipid peroxidation, but only in liver slices of both species, and > or = 0.2 mM ATR caused a marked depletion of reduced glutathione and significant increase in oxidized glutathione in both kidney and liver slices of both species. However, GSH to GSSG ratio was only significantly altered in the liver slices, indicating that oxidative stress may be the cause of toxicity in this organ. Both rat and pig tissue slices from the same organ responded similarly to ATR, although their basal biochemistry was different. ATR toxicity to both kidney and liver showed similar patterns but it appears that the mechanisms of toxicity are different. While cytotoxicity of ATR in kidney is only accompanied with GSH depletion, that of the liver is linked to both lipid peroxidation and GSH depletion. Striated muscle slices from both species were not affected by the highest ATR concentration. This further strengthens the argument that the molecular basis of ATR, target selective toxicity, is not a measure of the interaction between ATR and mitochondria and that other factors such as selective uptake are involved. Precision-cut tissue slices show organ-specific toxicity in kidney and liver from both rat and pig and suggest different mechanisms of injury for each organ.

Liity facebook-sivullemme

Täydellisin lääketieteellinen tietokanta tieteen tukemana

  • Toimii 55 kielellä
  • Yrttilääkkeet tieteen tukemana
  • Yrttien tunnistaminen kuvan perusteella
  • Interaktiivinen GPS-kartta - merkitse yrtit sijaintiin (tulossa pian)
  • Lue hakuusi liittyviä tieteellisiä julkaisuja
  • Hae lääkekasveja niiden vaikutusten perusteella
  • Järjestä kiinnostuksesi ja pysy ajan tasalla uutisista, kliinisistä tutkimuksista ja patenteista

Kirjoita oire tai sairaus ja lue yrtteistä, jotka saattavat auttaa, kirjoita yrtti ja näe taudit ja oireet, joita vastaan sitä käytetään.
* Kaikki tiedot perustuvat julkaistuun tieteelliseen tutkimukseen

Google Play badgeApp Store badge