Sivu 1 alkaen 135 tuloksia
Pulmonary hypertension (PH) is a progressive and serious disease, where exacerbated inflammatory response plays a critical role. Isoliquiritigenin (ISL), an important flavonoid isolated from Glycyrrhizae radix, exhibits a wide range of pharmacological actions including anti-inflammation. Previously
Chronic kidney disease (CKD) is a global nephrotic syndrome characterized by chronic inflammation, oxidative stress and fibrosis in the kidney. Isoliquiritigenin (ISL), a flavonoid from licorice, has historically been reported to inhibit innate immune responses to inflammation and Osteoclasts, bone-specialized multinucleated cells, are responsible for bone destructive diseases such as osteoporosis, periodontitis, and rheumatoid arthritis. Natural plant-derived products have received substantial attention given their potential therapeutic and preventive activities against
The host response to influenza virus infection is characterized by an acute lung inflammatory response in which intense inflammatory cell recruitment, hypercytokinemia, and a high level of oxidative stress are present. The sum of these events contributes to the virus-induced lung damage that leads
OBJECTIVE
Isoliquiritigenin (ISL), one of the major constituents of Dalbergia odorifera T. Chen (Leguminosae), is reported to exert anti-inflammatory effects, but the relevant anti-inflammatory mechanisms are not completely understood. Heme oxygenase-1 (HO-1) has been proven to be involved in the
Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus that leads to significant vision loss. Isoliquiritigenin (ISL) is a bioactive flavonoid found in the root of licorice with reported anti-oxidant and anti-inflammatory activities. In the present study, we evaluated
Background: We investigated the effect of root extracts from the traditional Chinese medicine (TCM) plants Glycyrrhiza glabra L., Paeonia lactiflora Pall., and the leaf extract of Eriobotrya japonica (Thunb.) Lindl., and their six major secondary metabolites, glycyrrhizic
Traumatic brain injury (TBI) caused by an external mechanical force acting on the brain is a serious neurological condition. Inflammation plays an important role in prolonging secondary tissue injury after TBI, leading to neuronal cell death and dysfunction. Isoliquiritigenin (ILG) is a flavonoid
Pleurisy refers to a pleural disease caused by pathogenic factors that stimulate the pleura associated with pleural inflammation and oxidative stress. Isoliquiritigenin (ISL), a flavonoid from the liquorice compound, possesses antioxidative and anti-inflammatory properties. In the current study, we
Isoliquiritigenin (ISL), a natural flavonoid extracted from licorice, has been demonstrated to exert attenuation of the nuclear factor-κB (NF-κB) signaling pathway and anti-inflammatory activity in a wide variety of cells. In the present study, the authors first evaluated the effects of ISL on
Purpose: To examine the protective effects of Isoliquiritigenin (ISL) in angiotensin II (ANG II)-induced inflammation and fibrosis on Human Tenon's capsule Fibroblasts (HTFs) and Mouse Peritoneal Macrophages (MPMs). This study also
Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue
Background: Inflammation and oxidative stress play essential roles in the occurrence and progression of diabetic cardiomyopathy (DCM). Isoliquiritigenin (ISL), a natural chalcone, exhibits strong anti-inflammatory and antioxidant
OBJECTIVE
Hypertensive renal injury plays important role in the pathogenesis of end-stage nephropathy and the need for dialysis. Isoliquiritigenin (ISL) is a natural compound with antioxidant and anti-inflammatory activities. In this study, the protective effects of ISL on Angiotensin II (Ang II)-
Septic acute kidney injury (AKI) characterized as acute infection and renal inflammation, still lacks of effective therapies. Isoliquiritigenin (ISL) as a small molecular from licorice, is able to inhibit the expression of HMGB1. However, the role and mechanism of ISL in septic AKI has not been