Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2007-Jul

A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
Thimmaraju Rudrappa
William J Quinn
Nicola R Stanley-Wall
Harsh P Bais

Mots clés

Abstrait

Bacillus subtilis, a plant growth promoting rhizobacteria (PGPR), induces growth response and protection against pathogenic organisms through colonization and biofilm formation on the Arabidopsis thaliana root surface. In the current investigation, we utilized various Arabidopsis defense pathway mutants in a series of studies and showed that the plants recognize B. subtilis by a chemical-dependent cascade, which is independent of the salicylic acid (SA), jasmonic acid (JA), or ethylene pathways. These experiments revealed the importance of root surface chemistry in colonization and biofilm formation by B. subtilis. It was found that B. subtilis FB17 could not form biofilms on the roots of NahG, a transgenic Arabidopsis line for salicylate hydroxylase that produces catechol as the degradation product of SA. These findings suggest that catechol may play a direct role in inhibiting B. subtilis FB17 biofilm formation on the NahG root surface, possibly through induction of reactive oxygen species (ROS) in the roots. Using both in vitro microtitre plate and in planta assays we confirmed that catechol inhibited biofilm formation, but not the planktonic growth, of B. subtilis. Inhibition of biofilm formation was shown to be the result of a physiological response by B. subtilis to the presence of catechol, which resulted in the down-regulation of transcription of the yqxM-sipW-tasA and epsA-O operons, both of which are required for biofilm formation by B. subtilis. These data indicate that the suppression of biofilm formation on NahG plants was strongly influenced by the root-derived catechol production through ROS-mediated down-regulation of B. subtilis biofilm genes.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge