Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nanoscale 2014-Nov

Anemone-like nanostructures for non-lithographic, reproducible, large-area, and ultra-sensitive SERS substrates.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
Bihter Daglar
Gokcen Birlik Demirel
Tural Khudiyev
Tamer Dogan
Osama Tobail
Sevde Altuntas
Fatih Buyukserin
Mehmet Bayindir

Mots clés

Abstrait

The melt-infiltration technique enables the fabrication of complex nanostructures for a wide range of applications in optics, electronics, biomaterials, and catalysis. Here, anemone-like nanostructures are produced for the first time under the surface/interface principles of melt-infiltration as a non-lithographic method. Functionalized anodized aluminum oxide (AAO) membranes are used as templates to provide large-area production of nanostructures, and polycarbonate (PC) films are used as active phase materials. In order to understand formation dynamics of anemone-like structures finite element method (FEM) simulations are performed and it is found that wetting behaviour of the polymer is responsible for the formation of cavities at the caps of the structures. These nanostructures are examined in the surface-enhanced-Raman-spectroscopy (SERS) experiment and they exhibit great potential in this field. Reproducible SERS signals are detected with relative standard deviations (RSDs) of 7.2-12.6% for about 10,000 individual spots. SERS measurements are demonstrated at low concentrations of Rhodamine 6G (R6G), even at the picomolar level, with an enhancement factor of ∼10(11). This high enhancement factor is ascribed to the significant electric field enhancement at the cavities of nanostructures and nanogaps between them, which is supported by finite difference time-domain (FDTD) simulations. These novel nanostructured films can be further optimized to be used in chemical and plasmonic sensors and as a single molecule SERS detection platform.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge