Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Disease 2009-May

First Report of Phytophthora citricola on Cornus mas in Bulgaria.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
S Bobev
K Van Poucke
M Maes

Mots clés

Abstrait

Cornelian cherry dogwood (Cornus mas) is a widespread species in Bulgaria and some cultivars with large fruits are the subject of propagation. In the springs of 2007 and 2008, severe, unusual damages were observed on sporadically scattered plantlets of 'Kazanlashki' (known also as 'Kazanlaker') in a nursery located near Vratza in northwestern Bulgaria. Symptoms were identical in both years and expressed on the leaves, young shoots, and adjacent rootstock wood. Dark brown, necrotic leaf spots initiated most often from the leaf periphery and quickly covered more than half of the leaf area. Necrosis of the leaves and shoots spread toward the older woody tissues and the plantlets died within a couple of weeks. Isolations from symptomatic leaves, shoots, and rootstocks (three to five samples per plant organ) on potato dextrose agar always revealed a fungus-like organism that formed relatively fast-growing white, radial, petaloid colonies. Numerous, ovoid to obpyriform, noncaducous, semipapillate sporangia occasionally with two papilla were observed after 1 or 2 days of incubation at 20°C in nonsterile soil extract (1). Average sporangium size was 39 (35 to 45) × 31 (20 to 35) μm with a ratio between both parameters of approximately 1.26. The pathogen's paragynous antheridia and smooth-walled spherical oogonia (20 to 32 μm in diameter) yielded spherical aplerotic to almost plerotic oospores on V8 medium with an average size of 25 μm. The morphological data identified the organism as Phytophthora citricola (1). Isolates had identical cultural and morphological characteristics, and pathogenicity was tested by laboratory inoculations carried out in 2007 (two isolates) and twice in 2008 (three isolates). Separately, detached leaves of C. mas seedlings and 'Kazanlashki' were wiped with 70% ethanol, punctured with a needle, and the wounds inoculated with 5-mm mycelial plugs from a 7-day-old V8 growth plate. Sterile V8 plugs were placed onto similar wounds of control leaves. Leaf samples were incubated at 20°C in a humidified chamber. Necrosis similar to that observed in the field became visible around the mycelia plugs 4 days after inoculation. The necrotic lesions enlarged to 20 to 25 mm in diameter within the next 2 days, whereas the control leaves did not show any symptoms. Subsequently, the pathogen was reisolated solely from all the mycelium-inoculated samples. By means of the same inoculation method, pathogenicity was also demonstrated on shoots and mature fruits of C. mas. DNA was isolated from mycelium of an isolate and the internal transcribed spacer (ITS) region was amplified using ITS6 and ITS4 primers. The PCR product was sequenced (GenBank Accession No. FJ269034) and the BLAST search showed 100% homology with P. citricola, type II (2). To our knowledge, this is the first report of P. citricola on C. mas in Bulgaria, thus confirming its ability to attack Cornus spp. (3). Taking the lethal results of the disease and the polyphagous nature of the causal agent into consideration, this report is a serious warning for nurserymen and consumers. References: (1) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996. (2) M. E. Gallegly and C. X. Hong. Phytophthora: Identifying Species by Morphology and DNA Fingerprints. The American Phytopathological Society, St. Paul, MN, 2008. (3) F. N. Martin and P. W. Tooley. Mycologia 95:269, 2003.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge