Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Orthopaedics and Related Research 2015-Mar

MicroRNA regulates vascular endothelial growth factor expression in chondrosarcoma cells.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
Xiaojuan Sun
Lei Wei
Qian Chen
Richard M Terek

Mots clés

Abstrait

BACKGROUND

Systemic treatments to prevent or treat chondrosarcoma metastasis are lacking and targeted therapy has yet to be developed. Hypoxia develops in tumors as they grow and hypoxia-related alterations in gene expression underlie some of the traits of cancer. One critical trait is the ability to induce sustained angiogenesis, which is usually related to expression of vascular endothelial growth factor (VEGF). A potential hypoxia-related mechanism resulting in altered gene expression involves microRNA. Little is known about microRNA expression in chondrosarcoma and its potential role in regulation of VEGF expression.

OBJECTIVE

Our purposes were (1) to determine if there is hypoxia-regulated microRNA overexpressed in chondrosarcoma; (2) if that contributes to increased VEGF expression; and (3) can VEGF expression be inhibited with a specific antagomir?

METHODS

MicroRNA expression was analyzed in two primary human chondrosarcomas and articular cartilage using array analysis and a cutoff of a fourfold difference in expression between tumor and normal tissue. The effects of hypoxia and hypoxia-inducible factor-1α (HIF-1α) transfection and silencing with siRNA on expression of candidate microRNAs were analyzed in chondrosarcoma cell line JJ. VEGF expression was measured with quantitative polymerase chain reaction and enzyme-linked immunosorbent assay after specific microRNA transfection and knockdown.

RESULTS

miR-181a was identified by array analysis and confirmed with quantitative reverse transcription-polymerase chain reaction, which showed that miR-181a was overexpressed in both human chondrosarcomas (33- and 55-fold) and the JJ cell line (sixfold) compared with cartilage and chondrocytes, respectively. In vitro, hypoxia and HIF-1α transfection each further increased miR-181a expression twofold in JJ cells. miR-181a transfection of JJ cells doubled expression of VEGF mRNA and increased secreted VEGF protein by 46% in normoxia, an effect that could be either direct or indirect. Similar enhancement of VEGF expression by miR-181a was found during hypoxia. Transfection with the antagomir anti-miR-181a decreased VEGF protein by 27% in normoxia and 23% in hypoxia.

CONCLUSIONS

miR-181a is a hypoxia-regulated microRNA that is overexpressed in chondrosarcoma and enhances VEGF expression, an effect that could be inhibited by anti-miR-181a.

CONCLUSIONS

Systemic treatment options for chondrosarcoma are limited. Antiangiogenic strategies could potentially be effective in limiting tumor progression. One method of inhibiting VEGF expression and associated angiogenesis could be an antagomir-based therapy targeted at miR-181a or other oncogenic microRNAs, although methods of systemic delivery are still under development. The effectiveness of antagomirs also needs to be compared with other antiangiogenic modalities in preclinical models.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge