Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Nanoscience and Nanotechnology 2010-Oct

Regulation of particle morphology of pH-dependent poly(epsilon-caprolactone)-poly(gamma-glutamic acid) micellar nanoparticles to combat breast cancer cells.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
Ann Shireen Chan
Chao-Hsuan Chen
Chun-Ming Huang
Ming-Fa Hsieh

Mots clés

Abstrait

The advantage of polymeric drug carriers lies in the uptake of the polymer nanoparticles by cancer cells before they release the drug, thereby reducing its toxic effects on healthy cells. A poly(gamma-glutamic acid)-b-poly(epsilon-caprolactone)-b-poly(gamma-glutamic acid) block copolymer was synthesized to encapsulate the anti-cancer drug doxorubicin in the treatment of wild type human breast cancer cells (MCF-7/WT). This pH-controllable carrier is negatively-charged in the presence of healthy tissues leading to lower cellular uptake. On the other hand, it becomes more hydrophobic in the acidic environment of cancer tissues, increasing its cellular uptake through the lipid bilayer. The block copolymer was characterized using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry and dynamic light scattering. The micelles formed at a critical concentration range of 62-130 microg/mL depending on the composition of poly(gamma-glutamic acid) and poly(epsilon-caprolactone) chains. The nano-sized micelles were found to have pH-dependent sizes in the range of 90-200 nm. The role of poly(gamma-glutamic acid) was to increase the hydrophilicity and decrease the particle size of the copolymer. The structures of micelles that were more compact and less anionic showed better stability in plasma. It was found that the drug loading content and drug loading efficiency were 12.14% and 97.22% respectively. The copolymer showed shrinking and aggregation at low pH which led to a slower drug release. These nano-sized micelles showed potential as effective drug delivery carriers for doxorubicin because of its accumulation and slow release inside the MCF-7/WT cells.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge