Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chest 1999-Oct

The acute effects of dexfenfluramine on human and porcine pulmonary vascular tone and resistance.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
T Higenbottam
H Marriott
G Cremona
E Laude
D Bee

Mots clés

Abstrait

OBJECTIVE

Treatment with anorectics has become an important aspect of care for the severely obese. One such anorectic, the phenylethylamine dexfenfluramine (dFen), has been associated with the development of pulmonary hypertension. It works by reducing the neuronal uptake of 5-hydroxytryptamine (5-HT; serotonin) through inhibition of the 5-HT transporter. In this study we investigated whether dFen has a direct vasoconstrictor action on human and porcine pulmonary vasculature.

METHODS

For the human study, tissue was obtained from patients who had undergone lung and heart-lung transplantation. The effect of dFen was studied in seven isolated colloid perfused human lungs and in rings of human pulmonary artery (PA) dissected from the lungs of a further 19 patients. For the porcine study, regional pulmonary vascular resistances (PVRs) were measured in isolated perfused porcine lungs. Vasoconstriction was assessed following dFen alone and in combination with hypoxia, cyclo-oxygenase blockade (indomethacin, 10(-5) mol/L), or nitric oxide synthase (NOS) blockade (N(G)-nitro-L-arginine, 10(-5) mol/L).

RESULTS

In the human study, 5-HT and dFen caused only limited increases in tension of isolated rings of PA. The concentration of dFen, 10(-4) mol/L, that was needed to increase tension was higher than that found normally in treated patients where peak levels are 3. 3 x 10(-7) mol/L. Other vasoconstrictors such as prostaglandin F(2)alpha, 10(-5) mol/L, and the thromboxane analog U46619, 10(-6) mol/L, produced far greater increases in tension. Ketanserin, 10(-4) mol/L, attenuated the constrictor response to 5-HT but had no effect on the constrictor response to dFen. Removal of the endothelium did not influence the response to dFen. In the isolated ventilated and perfused lungs, dFen caused an increase in PVR again only at a comparatively high concentration, 10(-4) mol/L. In the porcine study, dFen, 10(-4) mol/L, did not increase any PVR during normoxia or following NOS blockade. Small insignificant increases in PVR occurred during hypoxia and after cyclo-oxygenase blockade.

CONCLUSIONS

These results do not support the view that dFen would act as a direct vasoconstrictor when given in the usual doses. However, delayed elimination of dFen could raise tissue concentrations to high levels and give rise to vasoconstriction and pulmonary hypertension.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge