Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Evolutionary Biology 2018-09

Transcriptomic response of female adult moths to host and non-host plants in two closely related species.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
M Orsucci
P Audiot
S Nidelet
F Dorkeld
A Pommier
M Vabre
D Severac
M Rohmer
B Gschloessl
R Streiff

Mots clés

Abstrait

Divergent selection has been shown to promote speciation in many taxa and especially in phytophagous insects. In the Ostrinia species complex, the European corn borer (ECB) and adzuki bean borer (ABB) are two sibling species specialized to different host plants. The first is a well-known maize pest, whereas the second is a polyphagous species associated with various dicotyledons. Their specialization to host plants is driven by morphological, behavioral and physiological adaptations. In particular, previous studies have shown that ECB and ABB display marked behavior with regard to plant choice during oviposition, involving specific preference and avoidance mechanisms. In this study, our goal was to identify the mechanisms underlying this host-plant specialization in adult females through an analysis of their gene expression. We assembled and annotated a de novo reference transcriptome and measured differences in gene expression between ECB and ABB females, and between environments. We related differentially expressed genes to host preference behavior, and highlighted the functional categories involved. We also conducted a specific analysis of chemosensory genes, which are considered to be good candidates for host recognition before oviposition.

We recorded more differentially expressed genes in ECB than in ABB samples, and noticed that the majority of genes potentially involved in the host preference were different between the two species. At the functional level, the response to plant environment in adult females involved many processes, including the metabolism of carbohydrates, lipids, proteins, and amino acids; detoxification mechanisms and immunity; and the chemosensory repertoire (as expected). Until now, most of the olfactory receptors described in Ostrinia spp. had been tested for their putative role in pheromone recognition by males. Here we observed that one specific olfactory receptor was clearly associated with ECB's discrimination between maize and mugwort conditions, highlighting a potential new candidate involved in plant odor discrimination in adult females.

Our results are a first step toward the identification of candidate genes and functions involved in chemosensory processes, carbohydrate metabolism, and virus and retrovirus dynamics. These candidates provide new avenues for research into understanding the role of divergent selection between different environments in species diversification.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge