Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chinese Journal of Applied Ecology 2018-Aug

[oil microbial biomass and enzyme activities among different artificial forests in Ziwuling, Northwest China.]

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Le lien est enregistré dans le presse-papiers
Xue Juan Bai
Quan Chao Zeng
Shao Shan An
Hai Xin Zhang
Bao Rong Wang

Mots clés

Abstrait

Decades of ecological restoration on the Loess Plateau has achieved significant on-site benefits to reduce soil erosion and improve soil quality, with remarkable off-site effects of reducing sediment delivery to Yellow River. However, regional forest community succession is still far from being adequately developed. The Ziwuling forest region and its highly developed forest community, as an advanced eco-zone, can lend practical experience to other regions on the Loess Plateau and help to identify the most suitable tree species for a better regional restoration in the future. With the aim to systematically understand the potential effects of typical local tree species to soil properties, three typical and well-established artificial forests in the Ziwuling region, Robinia pseudoacacia, Pinus tabuliformis and Platycladus orientalis were investigated in this study, with the climax community Quercus wutaishanica as a reference. All the four forest type had comparable stand age (25 years). Soil samples from 0-20 cm layers were collected from those four plantations. The soil microbial biomass (carbon and nitrogen), soil enzyme (invertase, urease and alkaline phosphatase) activities and their correlations were measured and analyzed. The results showed that: 1) soil invertase activity ranged from 16.94 to 64.49 mg·g-1·24 h-1, the soil urease activity from 0.15 to 0.26 mg·g-1·24 h-1, and the alkaline phosphatase activity from 0.65 to 1.23 mg·g-1·24 h-1. The activities of those three enzymes were significantly higher in the P. orientalis soil that in the R. pseudoacacia and P. tabuliformis soils. The geometric average values in the P. orientalis soil were even greater than that in the Q. wutaishanica soil. 2) The soil microbial biomass carbon and nitrogen varied from 247.37 to 529.84 mg·kg-1 and 41.48 to 77.91 mg·kg-1, respectively. Both of them were significantly greater in the P. orientalis soil than that in the R. pseudoacacia and P. tabu-liformis soils. Even though the soil microbial biomass carbon in the P. orientalis soil remained lower than that in the Q. wutaishanica soil, its soil microbial biomass nitrogen was greater than in the Q. wutaishanica soil. 3) The dissolved organic carbon and nitrogen in the P. tabuliformis soil were much greater than that in other species, even greater than their own soil microbial biomass carbon and nitrogen. Such a result indicated that dissolved organic matter might play a more important role in providing plant available nutrients than microbial biomass in the P. tabuliformis soil. 4) The microbial biomass carbon and nitrogen were significantly positively correlated with the total organic carbon and the total nitrogen, particularly for the R. pseudoacacia and P. tabuliformis soils. There were significantly positive relationships between the soil invertase activity, urease activity and alkaline phosphatase activity, and their soil organic carbon, total nitrogen and total phosphorus contents. 5) Based on the results of principal component analysis, we concluded that the artificial forests types had obvious effects on soil microbial carbon and nitrogen, soil organic carbon, total nitrogen, the ratio of carbon to phosphorus, the ratio of nitrogen to phosphorus and urease activity. Overall, our findings suggested that P. orientalis is better than R. pseudoacacia and P. tabuliformis in term of improving soil properties in the south forest zone on the Chinese Loess Plateau.

Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge