Français
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

anticancer/hypoxie

Le lien est enregistré dans le presse-papiers
Page 1 de 3914 résultats

A novel anticancer theranostic pro-prodrug based on hypoxia and photo sequential control.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
A novel anticancer pro-prodrug (GMC-CAE-NO2) with diagnosis and therapy functions based on hypoxia and photo sequential control was designed. It provides a platform for constructing theranostic pro-prodrugs to release active drugs controlled by hypoxic status and UV illumination.

Advanced nanotechnology for hypoxia-associated antitumor therapy.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Hypoxia is a hallmark of the tumor microenvironment, which promotes the proliferation, metastasis and invasion of tumors and stimulates the resistance of cancer treatments, leading to the serious consequence of tumor recurrence. Many nanotechnology-based studies have been conducted to improve the
Tumors often consist of hypoxic regions which are resistant to chemo- and radiotherapy. Evofosfamide (also known as TH-302), a 2-nitroimidazole triggered hypoxia-activated prodrug, preferentially releases the DNA cross-linker bromo-isophosphoramide mustard in hypoxic cells. The intracellular kinase

Anticancer efficacy of the hypoxia-activated prodrug evofosfamide (TH-302) in osteolytic breast cancer murine models.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, hypoxia offers treatment opportunities, exemplified by the development of compounds that target hypoxic regions within tumors. Evofosfamide (TH-302) is a prodrug created by the conjugation of 2-nitroimidazole
Vascular disrupting agents (VDAs) have great potential in cancer treatment. However, in addition to their direct tumoral vascular collapse effect, VDAs activate host immunological responses, which can remarkably impair their anticancer efficacy. Here, a VDA nanomedicine, poly(l-glutamic

Hypoxia-Activated Anticancer Prodrug for Bioimaging, Tracking Drug Release, and Anticancer Application.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
A novel anticancer theranostic prodrug, FDU-DB-NO2, specifically activated by hypoxia for selective two-photon imaging hypoxia status, real-time tracking drug release, and solid tumor therapy was designed. The devised prodrug consists of an anticancer drug floxuridine (FDU), a fluorescence dye
Lung cancer is one of the leading causes of cancer-associated mortality, worldwide. The overall survival rate remains low, but progress has been made in improving the diagnosis and treatment of lung cancer over the past decades. Niclosamide, a salicylanilide derivative used for the treatment of

Hypoxia-responsive micelles self-assembled from amphiphilic block copolymers for the controlled release of anticancer drugs.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
Amphiphilic block copolymers poly(ethylene glycol)-block-poly(methacrylic acid-co-2-nitroimidazole methacrylate) (PEG-b-P(MAA-co-NIMA)) were synthesized by the combination of atom transfer radical polymerization (ATRP), hydrolysis and EDC reactions. These copolymers could self-assemble into
BACKGROUND TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the
Tumor hypoxia contributes to the progression of a malignant phenotype and resistance to ionizing radiation and anticancer drug therapy. Many of these effects in hypoxic tumor cells are mediated by expression of specific set of genes whose relation to therapy resistance is poorly understood. In this

Stille coupling reactions in the synthesis of hypoxia-selective 3-alkyl-1,2,4-benzotriazine 1,4-dioxide anticancer agents.

Seuls les utilisateurs enregistrés peuvent traduire des articles
Se connecter S'inscrire
The introduction of a 3-alkyl substituent is a key step in the synthesis of 1,2,4-benzotriazine 1,4-dioxide hypoxia-selective anticancer agents, such as SN29751. The Stille reaction of 3-chloro-1,2,4-benzotriazine 1-oxides (BTOs) 5 was inhibited by the presence of electron donating substituents on
Quinoxaline 1,4-dioxides have a broad range of biological activity that causes a growing interest in their derivatives for drug discovery. Recent studies demonstrated that quinoxaline 1,4- dioxides have a promising anticancer activity and good
Beta-L-dioxolane-cytidine (L-OddC; BCH-4556; troxacitabine), a novel L-configuration deoxycytidine analogue, was under clinical trials for treating cancer. The cytotoxicity of L-OddC is dependent on its phosphorylation to L-OddCTP by phosphoglycerate kinase (PGK) and its subsequent addition into
A series of aniline mustards with a wide range of electron-donating and -withdrawing substituents in the 3- and 4-positions has been synthesized and evaluated for cytotoxicity in cell culture to examine the potential of using nitro group deactivated nitrogen mustards for the design of novel
Nitro seco-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-ones (nitroCBIs) are a new class of prodrugs for antitumor therapy that undergo hypoxia-selective metabolism to form potent DNA minor groove alkylating agents. Although hindered by poor aqueous solubility, several examples have shown activity
Rejoignez notre
page facebook

La base de données d'herbes médicinales la plus complète soutenue par la science

  • Fonctionne en 55 langues
  • Cures à base de plantes soutenues par la science
  • Reconnaissance des herbes par image
  • Carte GPS interactive - étiquetez les herbes sur place (à venir)
  • Lisez les publications scientifiques liées à votre recherche
  • Rechercher les herbes médicinales par leurs effets
  • Organisez vos intérêts et restez à jour avec les nouvelles recherches, essais cliniques et brevets

Tapez un symptôme ou une maladie et lisez des informations sur les herbes qui pourraient aider, tapez une herbe et voyez les maladies et symptômes contre lesquels elle est utilisée.
* Toutes les informations sont basées sur des recherches scientifiques publiées

Google Play badgeApp Store badge