Page 1 de 89 résultats
Gibberellins (GA) are involved in bud dormancy release in several species. We show here that GA-treatment released bud dormancy, initiated bud sprouting and promoted sprout growth of excised potato tuber bud discs ('eyes'). Monoterpenes from peppermint oil (PMO) and S-(+)-carvone (CAR) interact with
A nuclear extract from petioles of sweet potato protected several sites in the 5'-upstream region of a gene for beta-amylase from DNase I digestion. One of these sites, located at a region around 800-base pairs upstream from the transcription start site, having an imperfect palindromic sequence of
A nuclear AmyB gene from sweet potato encoding beta-amylase (beta Amy) that is abundant in tuberous roots and inducible in other organs by an exogenous supply of sucrose or polygalacturonic acid, was isolated and characterized. Genomic Southern blot hybridization, restriction maps of independently
The sweet potato β-amylase (SPA) was modified by 6 types of methoxy polyethylene glycol to enhance its specific activity and thermal stability. The aims of the study were to select the optimum modifier, optimize the modification parameters, and further investigate the characterization of the
A simple method for the preparation of sweet potato beta-amylase by thymol amylose adsorption is described. The method is far more efficient and gives higher recovery of the enzyme. The crystalline enzyme thus obtained is found to be homogeneous by gel chromatography, polyacrylamide gel
Beta amylase from sweet potato has been crystallized in a form suitable for high resolution X-ray diffraction analysis from a mixture of polyethylene glycol 400 and ammonium sulfate at room temperature. The crystals are rectangular prisms and occasionally reach a size of 1 mm on an edge. The space
β-Amylase (EC 3.2.1.2), one of the main protein of the sweet potato, is an exo-working enzyme catalyzing the hydrolysis of α(1,4) glycosidic linkages in polysaccharides and removes successively maltose units from the non-reducing ends. The enzyme belongs to glycoside hydrolase GH14 family and
Sporamin and beta-amylase are two major proteins of tuberous storage root of sweet potato (Ipomoea batatas) and their accumulation can be induced concomitantly with the accumulation of starch in leaves and petioles by sucrose (K Nakamura, M Ohto, N Yoshida, K Nakamura [1991] Plant Physiol 96:
Sweet potato beta-amylase [EC 3.2.1.2, alpha 1,4-D-glucan maltohydrolase]-catalyzed hydrolyses of aryl beta-maltotriosides with substituents, NO2-, Cl-, and Br- at the o-, m-, and p-positions in the phenyl ring were studied at pH 4.8 and 25 degrees C. The hydrolyses of a few of the maltotriosides by
The complete amino acid sequence of a subunit of sweet potato beta-amylase, a homotetramer, was established by sequence analysis of peptides obtained by digestions with Achromobacter protease I and Staphylococcus aureus V8 protease and by cyanogen bromide cleavage of the S-carboxymethylated subunit.
Tuberous roots of the sweet potato are unusually rich in beta-amylase, and the beta-amylase polypeptides account for about 5% of the total soluble protein of the organ. Unlike beta-amylases from other origins, the sweet potato beta-amylase is a tetramer of identical subunits, and it also bears
Sweet potato beta-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to
beta-Amylase of sweet potato (Ipomoea batatas L.), which constitutes about 5% of the total soluble protein of the tuberous root, is absent or is present in only small amounts in organs other than the tuberous roots of the normal, field-grown plants. However, when leaf-petiole cuttings from such
A new starch-degrading enzyme activity is induced by storage of potato (Solanum tuberosum L.) tubers at low temperatures (L. Hill, R. Reimholz, R. Schroder, T.H. Nielsen, M. Stitt [1996] Plant Cell Environ 14: 1223-1237). The cold-induced activity was separated from other amylolytic activities in
Expression of genes coding for sporamin and beta-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately inducible in atypical vegetative tissues by sugars. A sweet potato gene for beta-amylase (beta-Amy) with introns as well as a beta-Amy::GUS fusion gene composed