Page 1 de 91 résultats
Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to
Metastasis frequently occurs in advanced ovarian cancer, which not only leads to substantial mortality but also becomes a major challenge to effective treatment. Epithelial-mesenchymal transition (EMT) is a key mechanism facilitating cancer metastasis. Targeting the EMT process with more efficacious
The prognosis of patients with ovarian cancer has remained poor mainly because of aggressive cancer progression. Since epithelial-mesenchymal transition (EMT) is an important mechanism mediating invasion and metastasis of cancer cells, targeting the EMT process with more efficacious and less toxic
Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytes in vitro and the mitochondrial apoptotic pathway mediated mechanism. Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were
OBJECTIVE
To investigate the protective effect of ginsenoside Re on myocardial cells of neonatal SD rat with hypoxia injury, and to explore its mechanism.
METHODS
The primary passage of myocardial cells collected from neonatal SD rats were divided into A group (with ordinary treatment), B group
Ginsenoside Rg1 promotes antioxidative protection and intracellular calcium homeostasis in cardiomyocytes hypoxia/reoxygenation (H/R) model. However, the pharmacological effects of G-Rg1 on autophagy in cardiomyocytes have not been reported. In this study, we employed H9c2 cardiomyocytes as a model
BACKGROUND
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased pulmonary arteriolar resistance. Pulmonary vasoconstriction has been proved to play a significant role in PAH. We previously reported that Panax notoginseng saponins (PNS) might attenuate hypoxia and
Previous studies have shown an attenuating effect of ginsenoside Re on myocardial injury induced by hypoxia/reoxygenation (H/R). However, the underlying mechanism remains unclear. This study was designed to determine the underlying mechanism by which ginsenoside Re protects from myocardial injury
OBJECTIVE
Ginsenoside Rgl could increase the tolerance of neural hypoxia and ischemia under stress, and play an anti-apoptotic effect in hypoxia ischemia brain damage (HIBD). To investigate the effects of ginsenoside Rgl on neural apoptosis and recovery of neurological function in neonatal rats with
The current study was designed to investigate the effect of ginsenoside Rb1 (Rb1) on apoptosis induced by hypoxia and oxidative stress in a retinal ganglion cell line (RGC-5). The underlying mechanism was also investigated. RGC-5 cells were pretreated with 10 µmol/l Rb1 for 24 h and exposed to 400
OBJECTIVE
To investigate effects of ginsenoside Rg1 on angiogenesis in neonatal rats with hypoxia ischemia brain damage (HIBD), and explore the possible mechanism.
METHODS
Fifty-four of 10-day-old SD rats were randomly divided into sham-operation group (n = 6), hypoxia-ischemia brain damage group (n
OBJECTIVE
To determine if the pretreatment of hypoxic human oesophageal carcinoma cell lines (EC109, TE1 and KYSE170) with ginsenoside Rg3 (Rg3) increases their radiosensitivity to X-rays.
METHODS
The growth inhibitory effect of different Rg3 concentrations was measured using the
OBJECTIVE
To investigate the anti-apoptotic effect of ginsenoside Rg1 in neonatal rats with hypoxia ischemia brain damage (HIBD), and to explore the possible signaling pathway involved in anti-apoptosis.
METHODS
Forty-eight 10-day-old Sprague Dawley (SD) rats (weighing 17-21 g, male or female) were
OBJECTIVE
To investigate whether ginsenoside-Rb1 (Gs-Rb1) inhibits the apoptosis of hypoxia cardiomyocytes by up-regulating apelin-APJ system and whether the system is affected by hypoxia-induced factor 1α (Hif-1α).
METHODS
Neonatal rat cardiomyocytes were randomly divided into 6 groups: a control
Hypoxia-inducible factor 1 is believed to play a prominent role in the survival and developing progress of cancers. As a result, inhibiting α subunit of hypoxia-inducible factor 1 represents an attractive strategy against tumor. Although hypoxia-inducible factor 1α is a hypoxia-regulated subunit,