Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2019-Sep

Effect of pH and citric acid on the growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for phytostabilization.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Héctor González
Daniel Fernández-Fuego
Ana Bertrand
Aída González

Keywords

Coimriú

Heavy-metal contamination of soils has increased in the last decades due to anthropogenic and industrial activities. Arsenic is one of the pollutants that is commonly found in industrial soils and is toxic for both plants and humans. The pH of the soil or the culture medium is one of the most important factors that interferes with the bioavailability of this metalloid to the plant. The addition of chelating agents, such as citric acid (CA), can increase the absorption of As by plants. Therefore, the objective of this work is to study the effect of the pH and the exogenous addition of citric acid on the growth, As accumulation, and thiol compounds in Eupatorium cannabinum; this plant grows naturally in contaminated soils in Asturias, Spain, and has a potential use in phytoremediation. The results showed that E. cannabinum was able to tolerate As stress even at extreme pH values and accumulated a high amounts of As in its roots, which makes it a promising species for the phytostabilization of soils polluted with this metalloid. An addition of 20 mg CA L-1 led to increased biomass and As accumulation at acidic pH. In order to determine if thiolic compounds, such as phytochelatins, are involved in As accumulation and detoxification in E. cannabinum, we analyzed the synthesis of these compounds in the presence and absence of As and/or citric acid. Our results suggest that these thiolic compounds play a major role in As detoxification, since the presence of CA as a chelating agent reduced the amount of thiols necessary to cope with the toxicity caused by As.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge