Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Microbiology 2006-Jun

Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Ashok K Patra
Luc Abbadie
Annie Clays-Josserand
Valérie Degrange
Susan J Grayston
Nadine Guillaumaud
Pierre Loiseau
Frédérique Louault
Shahid Mahmood
Sylvie Nazaret

Keywords

Coimriú

Management by combined grazing and mowing events is commonly used in grasslands, which influences the activity and composition of soil bacterial communities. Whether observed effects are mediated by management-induced disturbances, or indirectly by changes in the identity of major plant species, is still unknown. To address this issue, we quantified substrate-induced respiration (SIR), and the nitrification, denitrification and free-living N(2)-fixation enzyme activities below grass tufts of three major plant species (Holcus lanatus, Arrhenatherum elatius and Dactylis glomerata) in extensively or intensively managed grasslands. The genetic structures of eubacterial, ammonia oxidizing, nitrate reducing, and free-living N(2)-fixing communities were also characterized by ribosomal intergenic spacer analysis, and denaturing gradient gel electrophoresis (DGGE) or restriction fragment length polymorphism (RFLP) targeting group-specific genes. SIR was not influenced by management and plant species, whereas denitrification enzyme activity was influenced only by plant species, and management-plant species interactions were observed for fixation and nitrification enzyme activities. Changes in nitrification enzyme activity were likely largely explained by the observed changes in ammonium concentration, whereas N availability was not a major factor explaining changes in denitrification and fixation enzyme activities. The structures of eubacterial and free-living N(2)-fixing communities were essentially controlled by management, whereas the diversity of nitrate reducers and ammonia oxidizers depended on both management and plant species. For each functional group, changes in enzyme activity were not correlated or were weakly correlated to overall changes in genetic structure, but around 60% of activity variance was correlated to changes in five RFLP or DGGE bands. Although our conclusions should be tested for other ecosystems and seasons, these results show that predicting microbial changes induced by management in grasslands requires consideration of management-plant species interactions.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge