Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Restorative Neurology and Neuroscience 2018

Kinematic and kinetic benefits of implantable peroneal nerve stimulation in people with post-stroke drop foot using an ankle-foot orthosis.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Frank Berenpas
Sven Schiemanck
Anita Beelen
Frans Nollet
Vivian Weerdesteyn
Alexander Geurts

Keywords

Coimriú

Contralesional 'drop foot' after stroke is usually treated with an ankle-foot orthosis (AFO). However, AFOs may hamper ankle motion during stance. Peroneal functional electrical stimulation (FES) is an alternative treatment that provides active dorsiflexion and allows normal ankle motion. Despite this theoretical advantage of FES, the kinematic and kinetic differences between AFO and FES have been scarcely investigated.

To test whether walking with implanted FES leads to improvements in stance stability, propulsion, and swing initiation compared to AFO.

A 4-channel peroneal nerve stimulator (ActiGait ®) was implanted in 22 chronic patients after stroke. Instrumented gait analyses were performed during comfortable walking up to 26 weeks (n = 10) or 52 weeks (n = 12) after FES-system activation. Kinematics of knee and ankle (stance and swing phase) and kinetics (stance phase) of gait were determined, besides spatiotemporal parameters. Finally, we determined whether differences between devices regarding late stance kine(ma)tics correlated with those regarding the swing phase.

In mid-stance, knee stability improved as the peak knee extension velocity was lower with FES (β = 18.1°/s, p = 0.007), while peak ankle plantarflexion velocity (β = -29.2°/s, p = 0.006) and peak ankle plantarflexion power (β = -0.2 W/kg, p = 0.018) were higher with FES compared to AFO. With FES, the ground reaction force (GRF) vector at peak ankle power (i.e., 'propulsion') was oriented more anteriorly (β = -1.1°, p = 0.001). Similarly, the horizontal GRF (β = -0.8% body mass, p = 0.003) and gait speed (β = 0.03 m/s, p = 0.015) were higher. An increase in peak ankle plantarflexion velocity and a more forward oriented GRF angle during late stance were moderately associated with an increase in hip flexion velocity during initial swing (rs = 0.502, p = 0.029 and rs = 0.504, p = 0.028, respectively).

This study substantiates the evidence that implantable peroneal FES as a treatment for post-stroke drop foot may be superior over AFO in terms of knee stability, ankle plantarflexion power, and propulsion.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge