Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Botany 2011-Nov

Population differentiation and plasticity in vegetative ontogeny: effects on life-history expression in Erysimum capitatum (Brassicaceae).

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Eunsuk Kim
Kathleen Donohue

Keywords

Coimriú

OBJECTIVE

Distinguishing the contributions of phenotypic plasticity vs. population differentiation to variation in the life history of plants throughout their range is important for predicting their performance after dispersal or their responses to environmental change. In Erysimum capitatum, plants in alpine environments are iteroparous perennials, but those below tree line are semelparous perennials. We tested population differentiation and plasticity of life-history variation and explored the effects of plastic responses at the prereproductive stage on life-history expression.

METHODS

Plants from alpine and below tree-line populations were grown in a common greenhouse environment. Soil water content at the prereproductive stage was manipulated to simulate field condition. Because rosette ontogeny of E. capitatum (i.e., production of multiple rosettes, reproductive allocation, and degeneration of rosettes) was highly associated with in situ life-history variation, water effects on rosette ontogeny and life history were assessed.

RESULTS

Plants from alpine populations showed higher postreproductive survival than those from low-elevation populations in the greenhouse environment, and such difference can be explained by differential rosette ontogeny at both the prereproductive and reproductive stage. In addition, rosette development at the reproductive stage was plastic to water availability at the prereproductive stage, which influences life-history expression as adults.

CONCLUSIONS

Because water availability is lower at low-elevation sites, in situ population differentiation is likely caused by plasticity to water availability as well as by genetic differentiation or maternal effects. Plastic or evolutionary changes of prereproductive traits are expected to influence adult life-history expression, which possibly influence population demography.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge