Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Endocrinology 2007-Oct

Protease-resistant insulin-like growth factor (IGF)-binding protein-4 inhibits IGF-I actions and neointimal expansion in a porcine model of neointimal hyperplasia.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
T C Nichols
W H Busby
E Merricks
J Sipos
M Rowland
K Sitko
D R Clemmons

Keywords

Coimriú

IGF-I has been shown to play a role in the progression of atherosclerosis in experimental animal models. IGF-binding protein-4 (IGFBP-4) binds to IGF-I and prevents its association with receptors. Overexpression of a protease-resistant form of IGFBP-4 has been shown to inhibit the ability of IGF-I to stimulate normal smooth muscle cell growth in mice. Based on these observations, we prepared a protease-resistant form of IGFBP-4 and infused it into hypercholesterolemic pigs. Infusion of the protease-resistant mutant inhibited lesion development by 53.3 +/- 6.1% (n = 6; P < 0.01). Control vessels that received an equimolar concentration of IGF-I and the protease-resistant IGFBP-4 showed no reduction in lesion size compared with control lesions that were infused with vehicle. Infusion of a nonmutated form of IGFBP-4 did not significantly inhibit lesion development. Proliferating cell nuclear antigen analysis showed that the mutant IGFBP-4 appeared to inhibit cell proliferation. The area occupied by extracellular matrix was also reduced proportionally compared with total lesion area. Immunoblotting revealed that the mutant IGFBP-4 remained intact, whereas the wild-type IGFBP-4 that was infused was proteolytically cleaved. Further analysis of the lesions revealed that a marker protein, IGFBP-5, whose synthesis is stimulated by IGF-I, was decreased in the lesions that received the protease-resistant, IGFBP-4 mutant, whereas there was no change in lesions that received wild-type IGFBP-4 or the mutant protein plus IGF-I. These findings clearly illustrate that infusion of protease-resistant IGFBP-4 into the perilesion environment results in inhibition of cell proliferation and attenuation of the development of neointima. The findings support the hypothesis that inhibiting IGFBP-4 proteolysis in the lesion microenvironment could be an effective means for regulating neointimal expansion.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge