Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Stereotactic and Functional Neurosurgery 2015

Risk assessment of magnetic resonance imaging in chronically implanted paddle electrodes for cortical stimulation.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Helena T Tronnier
Uwe Melchert
Dirk Petersen
Volker M Tronnier

Keywords

Coimriú

BACKGROUND

Cortical epidural stimulation is used for the treatment of different neuropsychiatric disorders such as chronic neuropathic pain, tinnitus, movement disorders, and psychiatric diseases. While preoperative magnetic resonance imaging (MRI) is considered the imaging tool of choice for planning the approach and electrode placement, postoperative MRI is still a contraindication with implanted paddle leads due to the risk of thermal damage or current induction creating seizures or neurological deficits.

OBJECTIVE

In this feasibility in vitro study the temperature changes and induction were determined as well as the artifacts caused by 2 parallel paddle leads (Resume II, Model 3587 A; Medtronic, Minneapolis, Minn., USA), commonly used in clinical practice with and without a pulse generator (Prime Advanced, Model 7489; Medtronic).

METHODS

An ultrasound gel-filled head phantom with 2 paddle leads mimicking the surgical scenario was used to evaluate temperature changes as well as induced currents in a 1.5- and 3-tesla MR scanner. In addition, 1 patient underwent a 3-tesla MRI with an implanted subdural paddle lead.

RESULTS

Negligible temperature changes were detected with turbo spin echo sequences in the 1.5- and 3-tesla scanner using a head and body coil. Induced voltages up to 6 V were measured. The imaging artifacts in the phantom were well tolerable. The patient's imaging was uneventful under the settings which are accepted for deep brain stimulation imaging.

CONCLUSIONS

MRI under the conditions described here seems to be safe with the implants used in this study. In particular, the induced temperature is much lower with paddle compared to conventional leads due to the different electrode design. The induced voltage does not carry any risks. However, these findings cannot automatically be transferred to other implants or other scanning conditions, and further studies are needed. The biomedical companies should be encouraged to develop MR-conditional paddle leads. Also, further research is necessary to study the mechanism of action of cortical stimulation in the future.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge