Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Clinical Investigation 1979-Dec

Role of the liver in regulation of ketone body production during sepsis.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
R W Wannemacher
J G Pace
R A Beall
R E Dinterman
V J Petrella
H A Neufeld

Keywords

Coimriú

During caloric deprivation, the septic host may fail to develop ketonemia as an adaptation to starvation. Because the plasma ketone body concentration is a function of the ratio of hepatic production and peripheral usage, a pneumococcal sepsis model was used in rats to measure the complex metabolic events that could account for this failure, including the effects of infection on lipolysis and esterification in adipose tissue, fatty acid transport in plasma and the rates of hepatic ketogenesis and whole body oxidation of ketones. Some of the studies were repeated with tularemia as the model infection. From these studies, it was concluded that during pneumococcal sepsis, the failure of rats to become ketonemic during caloric deprivation was the result of reduced ketogenic capacity of the liver and a possibly decreased hepatic supply of fatty acids. The latter appeared to be a secondary consequence of a severe reduction in circulating plasma albumin, the major transport protein for fatty acids, with no effect on the degree of saturation of the albumin with free fatty acids. Also, the infection had no significant effect on the rate of lipolysis or release of fatty acids from adipose tissue. Ketone body usage (oxidation) was either unaffected or reduced during pneumococcal sepsis in rats. Thus, a reduced rate of ketone production in the infected host was primarily responsible for the failure to develop starvation ketonemia under these conditions. The liver of the infected rat host appears to shuttle the fatty acids away from beta-oxidation and ketogenesis and toward triglyceride production, with resulting hepatocellular fatty metamorphosis.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge