Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Surgery 2015-Jul

Styrene maleic acid copolymer-pirarubicin induces tumor-selective oxidative stress and decreases tumor hypoxia as possible treatment of colorectal cancer liver metastases.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Jurstine Daruwalla
Khaled Greish
Cathy Malcontenti-Wilson
Vijayaragavan Muralidharan
Hiroshi Maeda
Chris Christophi

Keywords

Coimriú

BACKGROUND

Pirarubicin, a derivative of doxorubicin, induces tumor destruction via the production of reactive oxygen species (ROS) but is associated with cardiotoxicity. As a macromolecule (conjugated to styrene-maleic acid [SMA]), SMA-pirarubicin is selective to tumors resulting in improved survival with decreased systemic toxicity. Tumor destruction is, however incomplete, and resistant cells at the periphery of the tumor contribute to recurrence. Tumor hypoxia is a major factor in tumor resistance. Understanding the effect of oxidative stress induced by SMA-pirarubicin on the tumor microenvironment may be key to overcoming resistance. This study investigated the pattern of ROS production and tumor hypoxia after treatment with SMA-pirarubicin in a murine model of colorectal liver metastases.

METHODS

Liver metastases were induced in male, CBA mice using a murine-derived colon cancer cell line. SMA-pirarubicin (maximum tolerated dose, 100 mg/kg) or pirarubicin, (maximum tolerated dose, 10 mg/kg) were administered intravenously 14 days after tumor induction. Systemic oxidative stress in serum, liver, and cardiac tissue was quantified using the thiobarbituric acid reactive substances assay. Flow cytometry and fluorescence microscopy were used to assess ROS production for 48 hours after treatment. Tumor hypoxia was quantified using immunohistochemistry for pimonidazole adducts.

RESULTS

SMA-pirarubicin (100 mg/kg) induced ROS exclusively in tumors with minimal levels in serum and cardiac tissue. ROS levels were induced in a time-dependent and dose-dependent manner optimal between 4 and 24 hours after drug administration. Although tumor hypoxia was decreased overall, residual tumor cells adjacent to patent vessels were hypoxic.

CONCLUSIONS

This study provides insight into the tumor microenvironment after chemotherapy. SMA-pirarubicin inhibits the growth of colorectal liver metastases by inducing ROS, which seems to be largely tumor selective. The temporal pattern of ROS production can be used to improve future dosing regimens. Furthermore, the observation that residual tumor cells are hypoxic clarifies the need for a multimodal approach with agents that can alter the hypoxic state to effect complete tumor destruction.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge