Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Neuroscience 2019

The Delta-Subunit Selective GABA A Receptor Modulator, DS2, Improves Stroke Recovery via an Anti-inflammatory Mechanism.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Silke Neumann
Lily Boothman-Burrell
Emma Gowing
Thomas Jacobsen
Philip Ahring
Sarah Young
Karin Sandager-Nielsen
Andrew Clarkson

Keywords

Coimriú

Inflammatory processes are known to contribute to tissue damage in the central nervous system (CNS) across a broad range of neurological conditions, including stroke. Gamma amino butyric acid (GABA), the main inhibitory neurotransmitter in the CNS, has been implicated in modulating peripheral immune responses by acting on GABA A receptors on antigen-presenting cells and lymphocytes. Here, we investigated the effects and mechanism of action of the delta-selective compound, DS2, to improve stroke recovery and modulate inflammation. We report a decrease in nuclear factor (NF)-κB activation in innate immune cells over a concentration range in vitro. Following a photochemically induced motor cortex stroke, treatment with DS2 at 0.1 mg/kg from 1 h post-stroke significantly decreased circulating tumor necrosis factor (TNF)-α, interleukin (IL)-17, and IL-6 levels, reduced infarct size and improved motor function in mice. Free brain concentrations of DS2 were found to be lower than needed for robust modulation of central GABA A receptors and were not affected by the presence and absence of elacridar, an inhibitor of both P-glycoprotein and breast cancer resistance protein (BCRP). Finally, as DS2 appears to dampen peripheral immune activation and only shows limited brain exposure, we assessed the role of DS2 to promote functional recovery after stroke when administered from 3-days after the stroke. Treatment with DS2 from 3-days post-stroke improved motor function on the grid-walking, but not on the cylinder task. These data highlight the need to further develop subunit-selective compounds to better understand change in GABA receptor signaling pathways both centrally and peripherally. Importantly, we show that GABA compounds such as DS2 that only shows limited brain exposure can still afford significant protection and promote functional recovery most likely via modulation of peripheral immune cells and could be given as an adjunct treatment.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge