Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Anesthesia and Analgesia 2008-Jul

The effects of fentanyl-like opioids and hydromorphone on human 5-HT3A receptors.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Maria Wittmann
Thomas Schaaf
Ineke Peters
Stefan Wirz
Bernd W Urban
Martin Barann

Keywords

Coimriú

BACKGROUND

5-HT(3) receptors are involved in various physiologic functions, including the modulation of emesis. 5-HT(3) antagonists are clinically widely used as potent antiemetics. Emesis is also a side effect of opioid analgesics. Intriguingly, the natural opioid morphine shows specific interactions with human 5-HT(3) receptors at clinically relevant concentrations. In the present study, we investigated whether this is a general effect of opioids, even when they are structurally diverse. Therefore, another morphine (phenanthrene-type) derivative, hydromorphone, and fentanyl including its (4-anilinopiperidine-type) derivatives were tested.

METHODS

Whole-cell patches from human embryonic kidney-293 cells, stably transfected with the human 5-HT(3A) receptor cDNA, were used to determine the opioid effects on the 5-HT (3 microM)-induced currents using the patch clamp technique (voltage-clamp).

RESULTS

None of the fentanyl derivatives affected currents through the 5-HT(3A) receptor (3 microM 5-HT) significantly in the clinically relevant nanomolar concentration range (IC(50) values >30 microM). In contrast, hydromorphone was considerably more potent (IC(50) = 5.3 microM), slowing the current activation- and desensitization-kinetics significantly (at 3 microM by a factor of 1.9 and 2.4, respectively), similar to morphine. At concentrations much higher than clinically relevant, but within the range predicted from Meyer-Overton correlations for nonspecific interactions, the fentanyl derivatives all showed at least a tendency to suppress current amplitudes, but they had diverse effects on the activation- and desensitization-kinetics of 5-HT(3A) receptors.

CONCLUSIONS

Only morphine and hydromorphone, but not the fentanyl derivatives, reduced 5-HT-induced current amplitudes and slowed current kinetics near clinically relevant concentrations. The high potencies of morphine and hydromorphone, when compared to their lipophilicities, suggest a specific interaction with 5-HT(3A) receptors. In contrast, the effects of fentanyl-type opioids appear to be of unspecific nature. Because the rank order of opioid potencies for human 5-HT(3A) receptors is opposite of that for opioid receptors, the site involved is structurally different from opioid receptor binding sites. In agreement with recent data on different phenols, a phenolic OH-group (which morphine and hydromorphone possess) may contribute to specific interactions of morphine and hydromorphone with the 5-HT(3A) receptor. Future clinical studies could test whether corresponding differences in emetogenicity between different classes of opioids will be found.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge