Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2018-Jun

Towards a better understanding of long-term wood-chemistry variations in old-growth forests: A case study on ancient Pinus uncinata trees from the Pyrenees.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Andrea Hevia
Raúl Sánchez-Salguero
J Julio Camarero
Allan Buras
Gabriel Sangüesa-Barreda
J Diego Galván
Emilia Gutiérrez

Keywords

Coimriú

Dendrochemical studies in old forests are still underdeveloped. Old trees growing in remote high-elevation areas far from direct human influence constitute a promising biological proxy for the long-term reconstructions of environmental changes using tree-rings. Furthermore, centennial-long chronologies of multi-elemental chemistry at inter- and intra-annual resolution are scarce. Here, we use a novel non-destructive method by applying Micro X-ray fluorescence (μXRF) to wood samples of old Pinus uncinata trees from two Pyrenean high-elevation forests growing on acidic and basic soils. To disentangle ontogenetic (changes in tree age and diameter) from environmental influences (e.g., climate warming) we compared element patterns in sapwood (SW) and heartwood (HW) during the pre-industrial (1700-1849) and industrial (1850-2008) periods. We quantified tree-ring growth, wood density and relative element concentrations at annual (TRW, tree-ring) to seasonal resolution (EW, earlywood; LW, latewood) and related them to climate variables (temperature and precipitation) and volcanic eruptions in the 18th and 19th centuries. We detected differences for most studied elements between SW and HW along the stem and also between EW and LW within rings. Long-term positive and negative trends were observed for Ca and K, respectively. Cl, P and S showed positive trends during the industrial period. However, differences between sites were also notable. Higher values of Mg, Al, Si and the Ca/Mn ratio were observed at the site with acidic soil. Growing-season temperatures were positively related to growth, maximum wood density and to the concentration of most elements. Peaks in S, Fe, Cl, Zn and Ca were linked to major volcanic eruptions (e.g., Tambora in 1815). Our results reveal the potential of long-term wood-chemistry studies based on the μXRF non-destructive technique to reconstruct environmental changes.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge