Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2020-Sep

Acetic acid stimulates G-protein-coupled receptor GPR43 and induces intracellular calcium influx in L6 myotube cells

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
Hitomi Maruta
Hiromi Yamashita

Keywords

Coimriú

Short chain fatty acids (SCFAs) produced endogenously in the gut by bacterial fermentation of dietary fiber have been studied as nutrients that act as signaling molecules to activate G-protein coupled receptors (GPCRs) such as GPR41 and GPR43. GPR43 functioning involves the suppression of lipid accumulation and maintaining body energy homeostasis, and is activated by acetic acid or propionic acid. Previously, we reported that the orally administered acetic acid improves lipid metabolism in liver and skeletal muscles and suppresses obesity, thus improving glucose tolerance. Acetic acid stimulates AMP-activated protein kinase (AMPK) through its metabolic pathway in skeletal muscle cells. We hypothesized that acetic acid would stimulate GPR43 in skeletal muscle cells and has function in modulating gene expression related to muscle characteristics through its signal pathway. The objective of the current study was to clarify this effect of acetic acid. The GPR43 expression, observed in the differentiated myotube cells, was increased upon acetic acid treatment. Acetic acid induced the intracellular calcium influx in the cells and this induction was significantly inhibited by the GPR43-specific siRNA treatment. The calcineurin molecule is activated by calcium/calmodulin and is associated with proliferation of slow-twitch fibers. Calcineurin was activated by acetic acid treatment and inhibited by the concomitant treatment with GPR43-siRNA. Acetic acid induced nuclear localization of myocyte enhancer factor 2A (MEF2A), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and nuclear factor of activated t cells c1 (NFATc1). However, these localizations were abolished by the treatment with GPR43-siRNA. It was concluded that acetic acid plays a role in the activation of GPR43 and involves the proliferation of slow-twitch fibers in L6 skeletal muscles through the calcium-signaling pathway caused by induction of intracellular calcium influx.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge