Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

arachis triseminata/triacylglycerol

Sábháiltear an nasc chuig an gearrthaisce
AiltTrialacha cliniciúlaPaitinní
Leathanach 1 ó 18 torthaí
Triacylglycerols (TAGs) are the most important energy storage form in oilseed crops. Diacylglycerol acyltransferase (DGAT) catalyzes the rate-limiting step of the Kennedy pathway of TAG biosynthesis. To date, little is known about the regulation of DGAT activity in peanut (Arachis hypogaea), an
The accumulation of triacylglycerols during the development of three varieties of peanuts was monitored in two Tunisian cultivated peanut (Trabelsia (AraT) and Chounfakhi (AraC)) and one wild Tunisian peanut (Arbi (AraA)). The presence of TAGs composed of rare fatty acid residues such as
The enzymatic pathway for the synthesis of sn-glycerol 3-phosphate was investigated in developing groundnut seeds (Arachis hypogaea). Glycerol-3-phosphate dehydrogenase was not detected in this tissue but an active glycerokinase was demonstrated in the cytosolic fraction. It showed an optimum pH at

New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The peanut (Arachis hypogaea L.) is one of the three most important oil crops in the world due to its high average oil content (50 %). To reveal the biosynthetic pathways of seed oil in the early developmental stages of peanut pods with the goal of improving the oil quality, we presented a method
Triacylglycerols (TAGs) are the most important storage form of energy for eukaryotic cells. TAG biosynthetic activity was identified in the cytosolic fraction of developing peanut (Arachis hypogaea) cotyledons. This activity was NaF insensitive and acyl-coenzyme A (CoA) dependent.

A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Triacylglycerol (TAG) levels and oil bodies persist in sucrose (Suc)-rescued Arabidopsis (Arabidopsis thaliana) seedlings disrupted in seed oil catabolism. This study set out to establish if TAG levels persist as a metabolically inert pool when downstream catabolism is disrupted, or if other

Variant Amino Acid Residues Alter the Enzyme Activity of Peanut Type 2 Diacylglycerol Acyltransferases.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triacylglycerol (TAG) biosynthesis via the acyl-CoA-dependent acylation of diacylglycerol. This reaction is a major control point in the Kennedy pathway for biosynthesis of TAG, which is the most important form of stored metabolic
Acyl carrier proteins (ACP) were purified to homogeneity in the active form from developing seeds of pisa (Actinodaphne hookeri) which synthesizes exclusively trilaurin and from ground nut (Arachis hypogaea) which synthesizes triacylglycerols containing long chain fatty acids. Two major isoforms of

An Antibody to the Castor Bean Glyoxysomal Lipase (62 kD) also Binds to a 62 kD Protein in Extracts from Many Young Oilseed Plants.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
An antibody raised against purified glyoxysomal lipase (triacylglycerol hydrolase EC 3.1.1.3.) from castor bean (relative molecular weight of 62,000) also binds to a protein with a relative molecular weight of 62,000 in extracts of food reserve tissues from many young oilseed plants. These plants

Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The aim of the present study was to assess the effects of peanut (Arachis hypogaea L.) shell extracts (PSE) on lipases and to evaluate its potential development for the treatment of obesity. The peanut shells were extracted in 95% ethanol, and the extracts were screened for inhibitory effects on

Overexpression of peanut diacylglycerol acyltransferase 2 in Escherichia coli.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the

Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.).

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Diacylglycerol acyltransferase (DGAT) catalyzes the final and only committed acylation step in the synthesis of triacylglycerols. In this study, three novel AhDGATs genes were identified and isolated from peanut. Quantitative real-time RT-PCR analysis indicated that the AhDGAT1-2 transcript was more

A bifunctional enzyme that has both monoacylglycerol acyltransferase and acyl hydrolase activities.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol biosynthesis and an important signaling molecule. Here, we describe the isolation and characterization of the peanut (Arachis hypogaea) MGAT gene. The soluble enzyme utilizes invariant

The Peanut (Arachis hypogaea L.) Gene AhLPAT2 Increases the Lipid Content of Transgenic Arabidopsis Seeds.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Lysophosphatidic acid acyltransferase (LPAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. We recently reported the cloning and
Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge