Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

d galactose/arabidopsis

Sábháiltear an nasc chuig an gearrthaisce
AiltTrialacha cliniciúlaPaitinní
Leathanach 1 ó 18 torthaí

Distinct properties of the five UDP-D-glucose/UDP-D-galactose 4-epimerase isoforms of Arabidopsis thaliana.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Plant genomes contain genetically encoded isoforms of most nucleotide sugar interconversion enzymes. Here we show that Arabidopsis thaliana has five genes encoding functional UDP-D-glucose/UDP-D-galactose 4-epimerase (named UGE1 to UGE5). All A. thaliana UDP-d-glucose 4-epimerase isoforms are
Endomembrane organization is essential for cell physiology. We previously identified an Arabidopsis thaliana mutant in which a plasma membrane (PM) marker GFP-NIP5;1 and trans-Golgi network/early endosome (TGN/EE) markers were accumulated in intracellular aggregates in epidermal cells of the root

Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The biosynthesis of plant cell wall polysaccharides requires the concerted action of nucleotide sugar interconversion enzymes, nucleotide sugar transporters, and glycosyl transferases. How cell wall synthesis in planta is regulated, however, remains unclear. The root epidermal bulger 1 (reb1) mutant
We characterized peptidyl hydroxyproline (Hyp) O-galactosyltransferase (HGT), which is the initial enzyme in the arabinogalactan biosynthetic pathway. An in vitro assay of HGT activity was established using chemically synthesized fluorescent peptides as acceptor substrates and extracts from
Endomembrane organization is important for various aspects of cell physiology, including membrane protein trafficking. To explore the molecular mechanisms regulating the trafficking of plasma membrane-localized proteins in plants, we screened for Arabidopsis mutants with defective localization of

Arabidopsis thaliana α1,2-l-fucosyltransferase catalyzes the transfer of l-galactose to xyloglucan oligosaccharides.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
l-Galactose (l-Gal) is one of the components of plant cell wall polysaccharides. In the GDP-l-fucose-deficient Arabidopsis thaliana mutant mur1, l-fucose (l-Fuc) residues in xyloglucan are substituted by l-Gal residues. l-Gal only differs from l-Fuc by the presence of an oxygen at C-6. Thus, we
The azido derivatives of alcohols (3-azido-1,2-propandiol and 1,3-diazido-2-propanol) and monosaccharides (6-azido-6-deoxy-beta-D-glucose and 6-azido-6-deoxy-beta-D-galactose), as well as the proximal mutagenic product of sodium azide metabolism beta-azido-L-alanine, exhibited a high mutagenic

Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
BACKGROUND L-ascorbic acid (L-AA) is naturally synthesized in plants from D-glucose by 10 steps pathway. The pathway branch to synthesize L-galactose, the key intermediate for L-ascorbic acid biosynthesis, has been recently elucidated. Budding yeast produces an 5-carbon ascorbic acid analogue

The reb1-1 mutation of Arabidopsis. Effect on the structure and localization of galactose-containing cell wall polysaccharides.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The Arabidopsis (Arabidopsis thaliana) root epidermal bulger1-1 (reb1-1) mutant (allelic to root hair defective1 [rhd1]) is characterized by a reduced root elongation rate and by bulging of trichoblast cells. The REB1/RHD1 gene belongs to a family of UDP-D-Glucose 4-epimerases involved in the

Steady-state and presteady-state kinetics of the H+/hexose cotransporter (STP1) from Arabidopsis thaliana expressed in Xenopus oocytes.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
We have investigated the steady-state and presteady-state kinetics of the cloned H+/hexose cotransporter from Arabidopsis thaliana (STP1) expressed in Xenopus oocytes using the two-electrode voltage-clamp method. Steady-state sugar-dependent currents were measured between -150 and +50 mV as a
BACKGROUND Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative

A sink-specific H+/monosaccharide co-transporter from Nicotiana tabacum: cloning and heterologous expression in baker's yeast.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
A cDNA clone for a monosaccharide transporter (MST1) was isolated from tobacco, which is most strongly expressed in the various sink tissues of mature tobacco plants: roots, flowers, and young leaves. An open reading frame of 1569 bp codes for a protein with 523 amino acids and a calculated

Identification of a disaccharide side chain 2-O-α-D-galactopyranosyl-α-D-glucuronic acid in Arabidopsis xylan.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Arabidopsis xylan consists of a linear chain of β-1,4-linked D-xylosyl residues, about 10% of which are substituted with single residues of α-D-glucuronic acid (GlcA) or 4-O-methyl-α-D-glucuronic acid (MeGlcA) at O-2. In addition, about 60% of xylosyl residues are acetylated at O-2 and/or O-3.

Monosaccharide/proton symporter AtSTP1 plays a major role in uptake and response of Arabidopsis seeds and seedlings to sugars.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The aim of this study was to investigate the in vivo properties and function of the high-affinity monosaccharide/proton symporter AtSTP1 of Arabidopsis. We isolated an Atstp1 knock-out mutant and found that this plant grows and develops normally. The AtSTP1 gene is expressed in germinating seeds and
Galactokinase (GALK, EC 2.7.1.6) is a cytosolic enzyme with a wide occurrence across the taxonomic kingdoms. It catalyzes the phosphorylation of α-d-galactose (Gal) to α-d-Gal-1-P. The cytotoxicity of free (unphosphorylated) Gal is well documented in plants and causes marked defects. An Arabidopsis
Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge