Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

terpenoid/arabidopsis

Sábháiltear an nasc chuig an gearrthaisce
AiltTrialacha cliniciúlaPaitinní
Leathanach 1 ó 88 torthaí
One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of

Individual and joint activity of terpenoids, isolated from Calamintha nepeta extract, on Arabidopsis thaliana.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Four terpenoids, camphor, pulegone, trans-caryophyllene and farnesene, previously found in Calamintha nepeta (L.) Savi methanolic extract and essential oils were assayed on germination and root growth of Arabidopsis thaliana (L.) Heynh. None of the terpenes, singularly or in combination, was able to

Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Herbivore-damaged plants release complex mixtures of volatiles that attract natural enemies of the herbivore. To study the relevance of individual components of these mixtures for predator attraction, we manipulated herbivory-induced volatiles through genetic engineering. Metabolic engineering of
Volatile, low-molecular weight terpenoids have been implicated in plant defenses, but their direct role in resistance against microbial pathogens is not clearly defined. We have examined a possible role of terpenoid metabolism in the induced defense of Arabidopsis thaliana plants against leaf

Crystal Structure of Geranylgeranyl Pyrophosphate Synthase (CrtE) Involved in Cyanobacterial Terpenoid Biosynthesis

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Cyanobacteria are photosynthetic prokaryotes that perform oxygenic photosynthesis. Due to their ability to use the photon energy of sunlight to fix carbon dioxide into biomass, cyanobacteria are promising hosts for the sustainable production of terpenoids, also known as isoprenoids, a diverse class

Phytotoxic Terpenoids from Ligularia cymbulifera Roots.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Ligularia cymbulifera is one of the predominant species in the Hengduan Mountains, China, and has led to a decrease in the amount of forage grass in this area. However, little is known about the mechanism behind its predominance. In this study, two novel eremophilane sesquiterpenes, ligulacymirin A

Discovery of new biocatalysts for the glycosylation of terpenoid scaffolds.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The synthesis of terpenoid glycosides typically uses a chemical strategy since few biocatalysts have been identified that recognise these scaffolds. In this study, a platform of 107 recombinant glycosyltransferases (GTs), comprising the multigene family of small molecule GTs of Arabidopsis thaliana
The Arabidopsis genome project has recently reported sequences with similarity to members of the terpene synthase (TPS) gene family of higher plants. Surprisingly, several Arabidopsis terpene synthase-like sequences (AtTPS) share the most identity with TPS genes that participate in secondary

Genomic analysis of the terpenoid synthase ( AtTPS) gene family of Arabidopsis thaliana.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
A family of 40 terpenoid synthase genes ( AtTPS) was discovered by genome sequence analysis in Arabidopsis thaliana. This is the largest and most diverse group of TPS genes currently known for any species. AtTPS genes cluster into five phylogenetic subfamilies of the plant TPS superfamily.

Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
BACKGROUND Most insect-resistant transgenic crops employ toxins to control pests. A novel approach is to enhance the effectiveness of natural enemies by genetic engineering of the biosynthesis of volatile organic compounds (VOCs). Before the commercialisation of such transgenic plants can be

Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-D-erythritol synthase of Arabidopsis thaliana.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
A hypothetical gene with similarity to the ispD gene of Escherichia coli was cloned from Arabidopsis thaliana cDNA. The ORF of 909 bp specifies a protein of 302 amino acid residues. The cognate chromosomal gene consists of 2,071 bp and comprises 11 introns with a size range of 78-202 bp. A fragment

Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The white flowers of N. suaveolens emit a complex bouquet of fragrance volatiles. The dominant compounds are benzenoids (e.g. methyl benzoate, methyl salicylate, benzyl benzoate and benzyl salicylate), monoterpenes (1,8-cineole, limonene, sabinene, E-beta-ocimene, beta-beta-myrcene, alpha- and

Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult Arabidopsis.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
trans-Caryophyllene (TC) is a sesquiterpene commonly found as volatile component in many different aromatic plants. Although the phytotoxic effects of trans-caryophyllene on seedling growth are relatively explored, not many information is available regarding the phytotoxicity of this sesquiterpenes

LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The LIL3 protein of Arabidopsis (Arabidopsis thaliana) belongs to the light-harvesting complex (LHC) protein family, which also includes the light-harvesting chlorophyll-binding proteins of photosystems I and II, the early-light-inducible proteins, PsbS involved in nonphotochemical quenching, and

Terpenoid metabolism in wild-type and transgenic Arabidopsis plants.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are
Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge