Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2013-Feb

A novel Δ(1)-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Goon-Bo Kim
Young-Woo Nam

Ključne riječi

Sažetak

Proline accumulates in environmentally stressed plant cells including those of legume roots and nodules, but how its level is regulated is poorly understood. Δ(1)-Pyrroline-5-carboxylate synthetase (P5CS), the committed-step enzyme of proline biosynthesis, is encoded by two duplicated genes in many plants. Here, we isolated MtP5CS3, a third gene, from Medicago truncatula, whose predicted polypeptide sequence is highly similar to those of previously isolated MtP5CS1 and MtP5CS2 except an extra amino-terminal segment. MtP5CS3 was strongly expressed under salinity and drought in shoots and nodulating roots, while MtP5CS1 was constitutive and MtP5CS2 induced by abscisic acid. Under salinity, MtP5CS3 promoter was more active than those of MtP5CS1 and MtP5CS2, as shown by GUS fusions. Translationally fused MtP5CS1-GFP was localized in the cytoplasm, whereas significant proportions of MtP5CS2-GFP and MtP5CS3-GFP were co-localized with rubisco small subunit protein-fused RFP in transformed hairy root cells. Under salinity, RNA silencing of MtP5CS1 or MtP5CS2 strongly induced MtP5CS3 expression, while that of MtP5CS3 decreased free proline content and nodule number. Consistently, Mtp5cs3, a loss-of-function mutant, accumulated much less proline, formed fewer nodules, and fixed nitrogen significantly less efficiently than the wild type under salinity. Thus, MtP5CS3 plays a critical role in regulating stress-induced proline accumulation during symbiotic nitrogen fixation.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge