Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
SF journal of biotechnology and biomedical engineering 2018

Advancements in Free-Radical Pathologies and an Important Treatment Solution with a Free-Radical Inhibitor.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
R C Petersen
M S Reddy
P-R Liu

Ključne riječi

Sažetak

Unsaturated carbon-carbon double bonds particularly at exposed end groups of nonsolid fluids are susceptible to free-radical covalent bonding on one carbon atom creating a new free radical on the opposite carbon atom. Subsequent reactive secondary sequence free-radical polymerization can then continue across extensive carbon-carbon double bonds to form progressively larger molecules with ever-increasing viscosity and eventually produce solids. In a fluid solution when carbon-carbon double bonds are replaced by carbon-carbon single bonds to decrease fluidity, increasing molecular organization can interfere with molecular oxygen (O2) diffusion. During normal eukaryote cellular energy synthesis O2 is required by mitochondria to combine with electrons from the electron transport chain and hydrogen cations from the proton gradient to form water. When O2 is absent during periods of irregular hypoxia in mitochondrial energy synthesis, the generation of excess electrons can develop free radicals or excess protons can produce acid. Free radicals formed by limited O2 can damage lipids and proteins and greatly increase molecular sizes in growing vicious cycles to reduce oxygen availability even more for mitochondria during energy synthesis. Further, at adequate free-radical concentrations a reactive crosslinking unsaturated aldehyde lipid breakdown product can significantly support free-radical polymerization of lipid oils into rubbery gel-like solids and eventually even produce a crystalline lipid peroxidation with the double bond of O2. Most importantly, free-radical inhibitor hydroquinone intended for medical treatments in much pathology such as cancer, atherosclerosis, diabetes, infection/inflammation and also ageing has proven extremely effective in sequestering free radicals to prevent chain-growth reactive secondary sequence polymerization.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge